login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A074051 For each n there are uniquely determined numbers a(n) and b(n) and a polynomial p_n(x) such that for all integers m we have Sum_{i=1..m}i^n(i+1)! = a(n)*Sum_{i=1..m} (i+1)! + p_n(m)*(m+2)! + b(n). The sequence b(n) is A074052. 11
1, -1, 0, 3, -7, 0, 59, -217, 146, 2593, -15551, 32802, 160709, -1856621, 7971872, 1299951, -287113779, 2262481448, -7275903849, -36989148757, 698330745002, -4867040141851, 10231044332629, 184216198044034, -2679722886596295, 17971204188130391, -17976259717948832 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
If a(n)=0 then Sum_{i>=1}i^n(i+1)! = b(n) in the p-adic numbers. The only known numbers n with a(n)=0 are 2 and 5.
a(n)*(-1)^n gives the alternating row sums of the Sheffer triangle A143494 (2-restricted Stirling2). - Wolfdieter Lang, Oct 06 2011
LINKS
FORMULA
From Vladeta Jovovic, Jan 27 2005: (Start)
Second inverse binomial transform of A000587.
E.g.f.: exp(1 - 2*x - exp(-x)).
G.f.: Sum_{k >= 0}((x/(1+2*x))^k/Product_{l=0..k}(1 + l*x/(1+2*x)))/(1+2*x).
a(n) = Sum_{k=0..n} (-1)^(n-k)*(k^2-3*k+1)*Stirling2(n, k). (End)
a(n) = (-1)^n*(A000587(n+2)-A000587(n+1)). - Peter Luschny, Apr 17 2011
From Sergei N. Gladkovskii, Sep 28 2012 to Apr 22 2013: (Start)
Continued fractions:
G.f.: 1/U(0) where U(k)= x*k + 1 + x + x^2*(k+1)/U(k+1).
G.f.: -1/U(0) where U(k)= -x*k - 1 - x + x^2*(k+1)/U(k+1).
G.f.: 1/(U(0) - x) where U(k)= 1 + x + x*(k+1)/(1 - x/U(k+1)).
G.f.: 1/(U(0) + x) where U(k)= 1 + x*(2*k+1) - x*(k+1)/(1 + x/U(k+1)).
G.f.: 1/G(0) where G(k)= 1 + 2*x/(1 + 1/(1 + 2*x*(k+1)/G(k+1))).
G.f.: 1 - 2*x/(G(0) + 2*x) where G(k)= 1 + 1/(1 + 2*x*(k+1)/(1 + 2*x/G(k+1))).
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1+k*x+2*x)/(1-x/(x-1/G(k+1))).
G.f.: (G(0)-2-2*x)/x^2 where G(k) = 1 + 1/(1+k*x)/(1-x/(x+1/G(k+1) )).
G.f.: (S-2-2*x)/x^2 where S = sum(k>=0, (2 + x*k)*x^k/prod(i=0..k, (1+x*i))).
G.f.: (G(0)-2)/x where G(k) = 1 + 1/(1+k*x+x)/(1-x/(x+1/G(k+1))).
G.f.: (1+x)/x/Q(0) - 1/x, where Q(k)= 1 + x - x/(1 + x*(k+1)/Q(k+1)). (End)
a(n) = exp(1) * (-1)^n * Sum_{k>=0} (-1)^k * (k+2)^n / k!. - Ilya Gutkovskiy, Sep 02 2021
EXAMPLE
a(2)=0 because Sum_{i=1..m}i^2(i+1)! = (m-1)(m+2)!+2.
a(3)=3 because Sum_{i=1..m}i^3(i+1)! = 3*Sum_{i=1..m}(i+1)!+(m^2-m-1)(m+2)!+2.
MAPLE
alias(S2 = combinat[stirling2]);
A074051 := proc(n) local k;
1 + add((-1)^(n+k) * (S2(n+1, k+1) - S2(n+2, k+1)), k = 0..n) end:
seq(A074051(i), i = 0..26); # Peter Luschny, Apr 17 2011
MATHEMATICA
A[a_] := Module[{p, k}, p[n_] = 0; For[k = a - 1, k >= 0, k--, p[n_] = Expand[p[n] + n^k Coefficient[n^a - (n + 2)p[n] + p[n - 1], n^(k + 1)]] ]; Expand[n^a - (n + 2)p[n] + p[n - 1]] ]
(* Second program: *)
a[n_] := (-1)^n (BellB[n+2, -1] - BellB[n+1, -1]);
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 21 2018, after Peter Luschny *)
PROG
(Python)
from itertools import accumulate
def A074051_list(size):
if size < 1: return []
L, accu = [], [1]
for n in range(size-1):
accu = list(accumulate([-accu[-1]] + accu))
L.append(-(-1)**n*accu[-2])
return L
print(A074051_list(28)) # Peter Luschny, Apr 25 2016
CROSSREFS
Sequence in context: A354797 A247956 A295043 * A335918 A048292 A072450
KEYWORD
easy,sign
AUTHOR
Jan Fricke, Aug 14 2002
EXTENSIONS
More terms from Vladeta Jovovic, Jan 27 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 22:29 EDT 2024. Contains 370951 sequences. (Running on oeis4.)