login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061646 a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) with a(-1) = 1, a(0) = 1, a(1) = 1. 20
1, 1, 1, 3, 7, 19, 49, 129, 337, 883, 2311, 6051, 15841, 41473, 108577, 284259, 744199, 1948339, 5100817, 13354113, 34961521, 91530451, 239629831, 627359043, 1642447297, 4299982849, 11257501249, 29472520899, 77160061447, 202007663443, 528862928881 (list; graph; refs; listen; history; text; internal format)
OFFSET
-1,4
COMMENTS
Beginning at the well for the topograph of a positive definite quadratic form with values 1, 1, 1 at a superbase (i.e., 1, 1 and 1 are the vonorms of the superbase), these numbers indicate the values of the quadratic form at vectors adjacent to the path in the topograph of greatest rate of ascent of labels of the edges of the topograph.
For n > 1, a_n is the number of domino tilings of the L-grid obtained by removing the upper-right (n-1) X (n-2) rectangle from an (n+1) X n rectangle; also, for n > 1, (2*a_n)^2 is the number of domino tilings of the holey square obtained by removing the centered (n-2) X (n-2) square from an (n+2) X (n+2) square. - Roberto Tauraso, Jun 05 2004
Let P denote the 3 X 3 Fibonacci matrix [ 0 0 1 / 0 1 2 / 1 1 1 ]. Then a(n) is the central term of P^n. - Gary W. Adamson, May 13 2003
Coefficient of 1 when looking for the simplest linear dependence between (phi^(n-1) + Fibonacci(n-1)) / (phi^n + Fibonacci(n)) - 1/phi, 1 and phi. Thus a(n) is given by lindep([phi^(n-1) + Fibonacci(n-1))/(phi^n + Fibonacci(n))-1/phi,1,phi],80)[2] when using PARI/GP with enough digits of precision. - Thomas Baruchel, Nov 19 2004
a(n), n >= 2, is twice the area of the plane triangle in three-dimensional space with vertices (F(n-1),0,0), (0,F(n),0) and (0,0,F(n+1)). See the Atanassov et al. reference p. 88 (misprint in eq. (1.3): it should read F_{2n-1} not (F_{2n-1})^2). - Wolfdieter Lang, Jul 22 2005
From L. Edson Jeffery, Apr 20 2011: (Start)
Let U be the unit-primitive matrix (see [Jeffery])
U = U_(10,2) =
(0 0 1 0 0)
(0 1 0 1 0)
(1 0 1 0 1)
(0 1 0 2 0)
(0 0 2 0 1).
Then a(n) = (Trace(U^n))/5 = (U^n)_(5,5) = ((U^n)_(1,1)+(U^n)_(4,4))/2 = ((U^n)_(2,2)+(U^n)_(3,3))/2, n>=0, recalling that the offset for A061646 is -1. (See also A189316.) (End)
a(n+1) is the denominator of the continued fraction [1,...,1,2,1,...,1] with n 1's to the left of the central 2, and n 1's to the right of the central 2. For the numerators, see A079472. - Greg Dresden and Max Liu, Jun 25 2023
REFERENCES
R. C. Alperin, A family of nonlinear recurrences and their linear solutions, Fib. Q., 57:4 (2019), 318-321.
J. H. Conway, The Sensual (Quadratic) Form, MAA.
LINKS
I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, M. Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, arXiv:1509.05239 [math.CO], 2015-2017.
I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, M. Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, Journal of Integer Sequences, Vol. 20 (2017), Article 17.1.7.
K. T. Atanassov, V. Atanassova, A. G. Shannon and J. C. Turner, New visual perspectives on Fibonacci numbers, World Scientific, 2002.
P. F. F. Espinosa, J. F. González, J. P. Herrán, A. M. Cañadas, and J. L. Ramírez, On some relationships between snake graphs and Brauer configuration algebras, Algebra Disc. Math. (2022) Vol. 33, No. 2, 29-59.
Jonny Griffiths and Martin Griffiths, Fibonacci-related sequences via iterated QRT maps, Fib. Q., 51 (2013), 218-227.
Theodore Hwa, Posting to sci.math.
L. E. Jeffery, Unit-primitive matrices.
Thomas Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, 2001; pages 383-384.
Valcho Milchev and Tsvetelina Karamfilova, Domino tiling in grid - new dependence, arXiv:1707.09741 [math.HO], 2017.
Roberto Tauraso, A New Domino Tiling Sequence, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.3.
FORMULA
a(n) = Fibonacci(n)^2 + Fibonacci(n)*Fibonacci(n-1) + Fibonacci(n-1)^2 = A007598(n+1) - A001654(n-1). Area of triangle with sides sqrt(a(n)), sqrt(a(n-1)) and sqrt(a(n-2)) is sqrt(3)/4, i.e., 2*(a(n)*a(n-1) + a(n)*a(n-2) + a(n-1)*a(n-2)) - (a(n)^2 + a(n-1)^2 + a(n-2)^2) = 3. - Henry Bottomley, Jan 09 2003
a(n) = (2*Fibonacci(n)*Fibonacci(n+1)*(Fibonacci(n+2) + phi*Fibonacci(n+1)) + (1/phi)^n)/(Fibonacci(n)*phi + Fibonacci(n+1)). - Thomas Baruchel, Nov 19 2004
a(n) = F(2*n-1) + F(n-1)*F(n), with F(-3):=2, F(-2):=-1 and F(-1):=1 (corrected eq. (1.3) of the Atanassov et al. reference) with F(n):=A000045 (Fibonacci). - Wolfdieter Lang, Jul 22 2005
G.f.: 1/x + (1-x-x^2)/((1+x)*(1-3x+x^2)). - Philippe Deléham, Dec 16 2008
a(n) = F(n)*F(n+1) + F(n-1)^2 = A001654(n) + A007598(n-1), n >= -1. - Gary Detlefs, Nov 20 2010
a(n) = 2*F(n)^2 + (-1)^n = A175395(n) + (-1)^n, n > -1. - Gary Detlefs, Nov 27 2010
a(n) = (1/5)*Sum_{k=1..5) ((w_k)^2-1)^n, w_k = 2*cos((2*k-1)*Pi/10), n >= 0, recalling that the sequence offset is -1. - L. Edson Jeffery, Apr 20 2011
a(n) = ((-2)^n + 2*(3-sqrt(5))^n + 2*(3+sqrt(5))^n)/(5*2^n). - L. Edson Jeffery, Apr 21 2011
a(n+1) - a(n) = 2*A001654(n+2). - J. M. Bergot, Jun 12 2013
a(n) = L(2*n-2) + F(n-3)*F(n-2) for n >= 3, where L=A000032 are Lucas numbers. - J. M. Bergot, Aug 08 2012
a(n-1) + a(n) = A052995(n) for n > 0. - R. J. Mathar, Aug 15 2013
For n >= 1, a(n) = (F(n+2)^3 + F(n-2)^3)/(9*F(n)). - Richard R. Forberg, Nov 17 2014
From Klaus Purath, Apr 23 2019: (Start)
a(n) = (F(n-1)^2 + F(n)^2 + F(n+1)^2)/2.
a(n) = F(n+1)*F(n-1) + F(n)^2.
a(n) = F(n+1)^2 - F(n)*F(n-1). (In addition, see Nov 20 2010 Formula entry from Gary Detlefs.) (End)
a(n) = (F(n+2)^2 + 3*F(n-1)^2)/4. - Philippe Deléham, Oct 17 2020
EXAMPLE
a(7)=337 since 2*a(6) + 2*a(5) - a(4) = 2*129 + 2*49 - 19 = 337.
a(7)=337 since (F(9)^2 + 3* F(6)^2)/4 = (34^2 + 3*8^2) = 1348/4 = 337. - Philippe Deléham, Oct 17 2020
MAPLE
with (combinat):
F:= n-> fibonacci(n):
seq (F(n)*F(n+1) +F(n-1)^2, n=-1..27);
seq(2*F(n)^2+(-1)^n, n=0..27);
MATHEMATICA
LinearRecurrence[{2, 2, -1}, {1, 1, 1}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
#[[1]]^2+#[[2]]^2+#[[1]]#[[2]]&/@Partition[Fibonacci[Range[-2, 30]], 2, 1] (* Harvey P. Dale, Feb 11 2022 *)
PROG
(Haskell)
a061646 n = a061646_list !! (n + 1)
a061646_list = 1 : 1 : 1 : zipWith (-) (map (* 2)
(zipWith (+) (drop 2 a061646_list) (tail a061646_list))) a061646_list
-- Reinhard Zumkeller, Dec 02 2011
(PARI) a(n)=fibonacci(n)^2+fibonacci(n)*fibonacci(n-1)+fibonacci(n-1)^2 \\ Charles R Greathouse IV, Jun 13 2013
(Magma) I:=[1, 1, 1]; [n le 3 select I[n] else 2*Self(n-1) +2*Self(n-2) - Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 07 2019
(Sage) [2*fibonacci(n)^2 + (-1)^n for n in (-1..30)] # G. C. Greubel, Jan 07 2019
(GAP) a:=[1, 1, 1];; for n in [4..30] do a[n]:=2*a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Jan 07 2019
CROSSREFS
Sequence in context: A007288 A191824 A191757 * A017926 A017927 A116903
KEYWORD
nonn,easy
AUTHOR
Darrin Frey (freyd(AT)cedarville.edu), Jun 14 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 4 19:41 EDT 2024. Contains 372257 sequences. (Running on oeis4.)