login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048788 a(2n+1) = a(2n) + a(2n-1), a(2n) = 2*a(2n-1) + a(2n-2); a(n) = n for n = 0, 1. 13
0, 1, 2, 3, 8, 11, 30, 41, 112, 153, 418, 571, 1560, 2131, 5822, 7953, 21728, 29681, 81090, 110771, 302632, 413403, 1129438, 1542841, 4215120, 5757961, 15731042, 21489003, 58709048, 80198051, 219105150, 299303201, 817711552, 1117014753 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Numerators of continued fraction convergents to sqrt(3) - 1 (A160390). See A002530 for denominators. - N. J. A. Sloane, Dec 17 2007
Convergents are 1, 2/3, 3/4, 8/11, 11/15, 30/41, 41/56, 112/153, ... - Clark Kimberling, Sep 21 2013
A strong divisibility sequence, that is gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. - Peter Bala, Jun 06 2014
From Sarah-Marie Belcastro, Feb 15 2022: (Start)
a(n) is also the number of perfect matchings of an edge-labeled 2 X (n-1) Mobius band grid graph, or equivalently the number of domino tilings of a 2 X (n-1) Mobius band grid. (The twist is on the length-n side.)
a(n) is also the output of Lu and Wu's formula for the number of perfect matchings of an m X n Mobius band grid, specialized to m = 2 with the twist on the length-n side.
2*a(n) is the number of perfect matchings of an edge-labeled 2 X (n-1) projective planar grid graph, or equivalently the number of domino tilings of a 2 X (n-1) projective planar grid. (End)
REFERENCES
Russell Lyons, A bird's-eye view of uniform spanning trees and forests, in Microsurveys in Discrete Probability, AMS, 1998.
LINKS
Sarah-Marie Belcastro, Domino Tilings of 2 X n Grids (or Perfect Matchings of Grid Graphs) on Surfaces, J. Integer Seq. 26 (2023), Article 23.5.6.
Marcia Edson, Scott Lewis and Omer Yayenie, The k-periodic Fibonacci sequence and an extended Binet's formula, INTEGERS 11 (2011) #A32.
W. T. Lu and F. Y. Wu, Close-packed dimers on nonorientable surfaces, Physics Letters A, 293 (2002), 235-246.
D. Panario, M. Sahin, and Q. Wang, A family of Fibonacci-like conditional sequences, INTEGERS, Vol. 13, 2013, #A78.
J. L. Ramirez and F. Sirvent, A q-Analogue of the Bi-Periodic Fibonacci Sequence, J. Int. Seq. 19 (2016) # 16.4.6, t_n at a=2, b=1.
FORMULA
G.f.: x*(1+2*x-x^2)/(1-4*x^2+x^4). - Paul Barry, Sep 18 2009
a(n) = 4*a(n-2) - a(n-4). - Vincenzo Librandi, Dec 10 2013
a(2*n-1) = A001835(n); a(2*n) = 2*A001353(n). - Peter Bala, Jun 06 2014
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a1(n-1),a0(n)] for n>0:
a0(n) = ((3+sqrt(3))*(2-sqrt(3))^n-((-3+sqrt(3))*(2+sqrt(3))^n))/6.
a1(n) = 2*Sum_{i=1..n} a0(i). (End)
a(n) = ((r + (-1)^n/r)*s^n/2^(n/2) - (1/r + (-1)^n*r)*2^(n/2)/s^n)*sqrt(6)/12, where r = 1 + sqrt(2), s = 1 + sqrt(3). - Vladimir Reshetnikov, May 11 2016
a(n) = 2*ChebyshevU(n-1, 2) if n is even and ChebyshevU(n, 2) - ChebyshevU(n-1, 2) if n in odd. - G. C. Greubel, Dec 23 2019
a(n) = -(-1)^n*a(-n) for all n in Z. - Michael Somos, Sep 17 2020
MAPLE
seq( simplify( `if`(`mod`(n, 2)=0, 2*ChebyshevU((n-2)/2, 2), ChebyshevU((n-1)/2, 2) - ChebyshevU((n-3)/2, 2)) ), n=0..40); # G. C. Greubel, Dec 23 2019
MATHEMATICA
Numerator[NestList[(2/(2 + #))&, 0, 40]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *)
CoefficientList[Series[x(1+2x-x^2)/(1-4x^2+x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 10 2013 *)
a0[n_]:= ((3+Sqrt[3])*(2-Sqrt[3])^n-((-3+Sqrt[3])*(2+Sqrt[3])^n))/6 // Simplify
a1[n_]:= 2*Sum[a0[i], {i, 1, n}]
Flatten[MapIndexed[{a1[#-1], a0[#]}&, Range[20]]] (* Gerry Martens, Jul 10 2015 *)
Round@Table[With[{r=1+Sqrt[2], s=1+Sqrt[3]}, ((r + (-1)^n/r) s^n/2^(n/2) - (1/r + (-1)^n r) 2^(n/2)/s^n) Sqrt[6]/12], {n, 0, 20}] (* or *) LinearRecurrence[ {0, 4, 0, -1}, {0, 1, 2, 3}, 40] (* Vladimir Reshetnikov, May 11 2016 *)
Table[If[EvenQ[n], 2*ChebyshevU[(n-2)/2, 2], ChebyshevU[(n-1)/2, 2] - ChebyshevU[(n-3)/2, 2]], {n, 0, 40}] (* G. C. Greubel, Dec 23 2019 *)
PROG
(Magma) I:=[0, 1, 2, 3]; [n le 4 select I[n] else 4*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 10 2013
(PARI) main(size)=v=vector(size); v[1]=0; v[2]=1; v[3]=2; v[4]=3; for(i=5, size, v[i]=4*v[i-2] - v[i-4]); v; \\ Anders Hellström, Jul 11 2015
(PARI) a=vector(50); a[1]=1; a[2]=2; for(n=3, #a, if(n%2==1, a[n]=a[n-1]+a[n-2], a[n]=2*a[n-1]+a[n-2])); concat(0, a) \\ Colin Barker, Jan 30 2016
(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -1, 0, 4, 0]^n*[0; 1; 2; 3])[1, 1] \\ Charles R Greathouse IV, Mar 16 2017
(PARI) apply( {A048788(n)=imag((2+quadgen(12))^(n\/2)*if(bittest(n, 0), quadgen(12)-1, 2))}, [0..30]) \\ M. F. Hasler, Nov 04 2019
(PARI) {a(n) = my(s=1, m=n); if(n<0, s=-(-1)^n; m=-n); polcoeff(x*(1+2*x-x^2)/(1-4*x^2+x^4) + x*O(x^m), m)*s}; /* Michael Somos, Sep 17 2020 */
(Sage)
@CachedFunction
def a(n):
if (mod(n, 2)==0): return 2*chebyshev_U((n-2)/2, 2)
else: return chebyshev_U((n-1)/2, 2) - chebyshev_U((n-3)/2, 2)
[a(n) for n in (0..40)] # G. C. Greubel, Dec 23 2019
(GAP) a:=[0, 1, 2, 3];; for n in [5..40] do a[n]:=4a[n-1]-a[n-2]; od; a; # G. C. Greubel, Dec 23 2019
CROSSREFS
Bisections are A001835 and A052530.
Sequence in context: A119064 A285113 A335632 * A239453 A143914 A041123
KEYWORD
nonn,easy,frac
AUTHOR
Robin Trew (trew(AT)hcs.harvard.edu), Dec 11 1999
EXTENSIONS
Denominator of g.f. corrected by Paul Barry, Sep 18 2009
Incorrect g.f. deleted by Colin Barker, Aug 10 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 09:38 EDT 2024. Contains 372302 sequences. (Running on oeis4.)