login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A031443 Digitally balanced numbers: positive numbers that in base 2 have the same number of 0's as 1's. 101
2, 9, 10, 12, 35, 37, 38, 41, 42, 44, 49, 50, 52, 56, 135, 139, 141, 142, 147, 149, 150, 153, 154, 156, 163, 165, 166, 169, 170, 172, 177, 178, 180, 184, 195, 197, 198, 201, 202, 204, 209, 210, 212, 216, 225, 226, 228, 232, 240, 527, 535, 539, 541, 542, 551 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Also numbers k such that the binary digital mean dm(2, k) = (Sum_{i=1..d} 2*d_i - 1) / (2*d) = 0, where d is the number of digits in the binary representation of k and d_i the individual digits. - Reikku Kulon, Sep 21 2008
From Reikku Kulon, Sep 29 2008: (Start)
Each run of values begins with 2^(2k + 1) + 2^(k + 1) - 2^k - 1. The initial values increase according to the sequence {2^(k - 1), 2^(k - 2), 2^(k - 3), ..., 2^(k - k)}.
After this, the values follow a periodic sequence of increases by successive powers of two with single odd values interspersed.
Each run ends with an odd increase followed by increases of {2^(k - k), ..., 2^(k - 2), 2^(k - 1), 2^k}, finally reaching 2^(2k + 2) - 2^(k + 1).
Similar behavior occurs in other bases. (End)
Numbers k such that A000120(k)/A070939(k) = 1/2. - Ctibor O. Zizka, Oct 15 2008
Subsequence of A053754; A179888 is a subsequence. - Reinhard Zumkeller, Jul 31 2010
A000120(a(n)) = A023416(a(n)); A037861(a(n)) = 0.
A001700 gives number of terms having length 2*n in binary representation: A001700(n-1) = #{m: A070939(a(m))=2*n}. - Reinhard Zumkeller, Jun 08 2011
The number of terms below 2^k is A079309(floor(k/2)) for k > 1. - Amiram Eldar, Nov 21 2020
LINKS
Jason Bell, Thomas F. Lidbetter and Jeffrey Shallit, Additive number theory via approximation by regular languages, International Journal of Foundations of Computer Science, Vol. 31, No. 6 (2020), pp. 667-687; arXiv preprint, arXiv:1804.07996 [cs.FL], 2018.
Thomas Finn Lidbetter, Counting, Adding, and Regular Languages, Master's Thesis, University of Waterloo, Ontario, Canada, 2018.
FORMULA
a(n+1) = a(n) + 2^k + 2^(m-1) - 1 + floor((2^(k+m) - 2^k)/a(n))*(2^(2*m) + 2^(m-1)) where k is the largest integer such that 2^k divides a(n) and m is the largest integer such that 2^m divides a(n)/2^k+1. - Ulrich Schimke (UlrSchimke(AT)aol.com)
A145037(a(n)) = 0. - Reikku Kulon, Oct 02 2008
EXAMPLE
9 is a term because '1001' contains 2 '0's and 2 '1's.
MAPLE
a:=proc(n) local nn, n1, n0: nn:=convert(n, base, 2): n1:=add(nn[i], i=1..nops(nn)): n0:=nops(nn)-n1: if n0=n1 then n else end if end proc: seq(a(n), n = 1..240); # Emeric Deutsch, Jul 31 2008
MATHEMATICA
Select[Range[250], DigitCount[#, 2, 1]==DigitCount[#, 2, 0]&] (* Harvey P. Dale, Jul 22 2013 *)
FromDigits[#, 2]&/@DeleteCases[Flatten[Permutations/@Table[PadRight[{}, 2n, {1, 0}], {n, 5}], 1], _?(#[[1]]==0&)]//Sort (* Harvey P. Dale, May 30 2016 *)
PROG
(PARI) for(n=1, 100, b=binary(n); l=length(b); if(sum(i=1, l, component(b, i))==l/2, print1(n, ", ")))
(PARI) is(n)=hammingweight(n)==hammingweight(bitneg(n, #binary(n))) \\ Charles R Greathouse IV, Mar 29 2013
(PARI) is(n)=2*hammingweight(n)==exponent(n)+1 \\ Charles R Greathouse IV, Apr 18 2020
(Magma) [ n: n in [2..250] | Multiplicity({* z: z in Intseq(n, 2) *}, 0) eq &+Intseq(n, 2) ]; // Bruno Berselli, Jun 07 2011
(Haskell) -- See link, showing that Ulrich Schimkes formula provides a very efficient algorithm. Reinhard Zumkeller, Jun 15 2011
(Perl) for my $half ( 1 .. 4 ) {
my $N = 2 * $half; # only even widths apply
my $vector = (1 << ($N-1)) | ((1 << ($N/2-1)) - 1); # first key
my $n = 1; $n *= $_ for 2 .. $N; # N!
my $d = 1; $d *= $_ for 2 .. $N/2; # (N/2)!
for (1 .. $n/($d*$d*2)) {
print "$vector, ";
my ($v, $d) = ($vector, 0);
until ($v & 1 or !$v) { $d = ($d << 1)|1; $v >>= 1 }
$vector += $d + 1 + (($v ^ ($v + 1)) >> 2); # next key
}
} # Ruud H.G. van Tol, Mar 30 2014
(Python)
from sympy.utilities.iterables import multiset_permutations
A031443_list = [int('1'+''.join(p), 2) for n in range(1, 10) for p in multiset_permutations('0'*n+'1'*(n-1))] # Chai Wah Wu, Nov 15 2019
CROSSREFS
Subsequence of A053754.
Terms of binary width n are enumerated by A001700.
Sequence in context: A037314 A226841 A218560 * A344145 A051017 A078180
KEYWORD
nonn,base,easy,nice,changed
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 26 21:53 EDT 2024. Contains 372004 sequences. (Running on oeis4.)