login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024495 a(n) = C(n,2) + C(n,5) + ... + C(n, 3*floor(n/3)+2). 67
0, 0, 1, 3, 6, 11, 21, 42, 85, 171, 342, 683, 1365, 2730, 5461, 10923, 21846, 43691, 87381, 174762, 349525, 699051, 1398102, 2796203, 5592405, 11184810, 22369621, 44739243, 89478486, 178956971, 357913941, 715827882, 1431655765, 2863311531, 5726623062 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Trisections give A082365, A132804, A132805. - Paul Curtz, Nov 18 2007
If the offset is changed to 1, this is the maximal number of closed regions bounded by straight lines after n straight line cuts in a plane: a(n) = a(n-1) + n - 3, a(1)=0; a(2)=0; a(3)=1; and so on. - Srikanth K S, Jan 23 2008
M^n * [1,0,0] = [A024493(n), a(n), A024494(n)]; where M = a 3x3 matrix [1,1,0; 0,1,1; 1,0,1]. Sum of terms = 2^n. Example: M^5 * [1,0,0] = [11, 11, 10], sum = 2^5 = 32. - Gary W. Adamson, Mar 13 2009
For n>=1, a(n-1) is the number of generalized compositions of n when there are i^2/2 - 3*i/2 + 1 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010
Let M be any endomorphism on any vector space, such that M^3 = 1 (identity). Then (1+M)^n = A024493(n) + A024494(n)*M + a(n)*M^2. - Stanislav Sykora, Jun 10 2012
{A024493, A131708, A024495} is the difference analog of the hyperbolic functions {h_1(x), h_2(x), h_3(x)} of order 3. For the definitions of {h_i(x)} and the difference analog {H_i(n)} see [Erdelyi] and the Shevelev link respectively. - Vladimir Shevelev, Aug 01 2017
This is the p-INVERT of (1,1,1,1,1,...) for p(S) = 1 - S^3; see A291000. - Clark Kimberling, Aug 24 2017
REFERENCES
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, 2nd. ed., Problem 38, p. 70.
LINKS
Paul Barry, A note on Krawtchouk Polynomials and Riordan Arrays, JIS 11 (2008) 08.2.2, example 9.
Antoine-Augustin Cournot, Solution d'un problème d'analyse combinatoire, Bulletin des Sciences Mathématiques, Physiques et Chimiques, item 34, volume 11, 1829, pages 93-97.  Also at Google Books. Page 97 case p=3 formula y^(2) = a(n).
Christian Ramus, Solution générale d'un problème d'analyse combinatoire, Journal für die Reine und Angewandte Mathematik (Crelle's journal), volume 11, 1834, pages 353-355. Page 353 case p=3 formula y^(2) = a(n).
Eric Weisstein's World of Mathematics, Plane division by lines
FORMULA
a(n) = ( 2^n + 2*cos((n-4)*Pi/3) )/3 = (2^n - A057079(n))/3.
a(n) = 2*a(n-1) + A010892(n-2) = a(n-1) + A024494(n-1). With initial zero, binomial transform of A011655 which is effectively A010892 unsigned. - Henry Bottomley, Jun 04 2001
a(2) = 1, a(3) = 3, a(n+2) = a(n+1) - a(n) + 2^n. - Benoit Cloitre, Sep 04 2002
a(n) = Sum_{k=0..n} 2^k*2*sin(Pi*(n-k)/3 + Pi/3)/sqrt(3) (offset 0). - Paul Barry, May 18 2004
G.f.: x^2/((1-x)^3 - x^3) = x^2 / ( (1-2*x)*(1-x+x^2) ).
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3). - Paul Curtz, Nov 18 2007
a(n) + A024493(n-1) = A131577(n). - Paul Curtz, Jan 24 2008
From Paul Curtz, May 29 2011: (Start)
a(n) + a(n+3) = 3*2^n = A007283(n).
a(n+6) - a(n) = 21*2^n = A175805(n).
a(n) + a(n+9) = 171*2^n.
a(n+12) - a(n) = 1365*2^n. (End)
a(n) = A113405(n) + A113405(n+1). - Paul Curtz, Jun 05 2011
Start with x(0)=1, y(0)=0, z(0)=0 and set x(n+1) = x(n) + z(n), y(n+1) = y(n) + x(n), z(n+1) = z(n) + y(n). Then a(n) = z(n). - Stanislav Sykora, Jun 10 2012
G.f.: -x^2/( x^3 - 1 + 3*x/Q(0) ) where Q(k) = 1 + k*(x+1) + 3*x - x*(k+1)*(k+4)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Mar 15 2013
a(n) = 1/18*(-4*(-1)^floor((n - 1)/3) - 6*(-1)^floor(n/3) - 3*(-1)^floor((n + 1)/3) + (-1)^(1 + floor((n + 2)/3)) + 3*2^(n + 1)). - John M. Campbell, Dec 23 2016
a(n) = (1/63)*(-40 + 21*2^n - 42*floor(n/6) + 32*floor((n+3)/6) + 16*floor((n+ 4)/6) - 24*floor((n+5)/6) - 22*floor((n+7)/6) + 21*floor((n+8)/6) + 10*floor((n+9)/6) + 5*floor((n+10)/6) + 3*floor((n+11)/6) + floor((n+ 13)/6)). - John M. Campbell, Dec 24 2016
a(n+m) = a(n)*A024493(m) + A131708(n)*A131708(m) + A024493(n)*a(m). - Vladimir Shevelev, Aug 01 2017
From Kevin Ryde, Sep 24 2020: (Start)
a(n) = (1/3)*2^n - (1/3)*cos((1/3)*Pi*n) - (1/sqrt(3))*sin((1/3)*Pi*n). [Cournot]
a(n) + A111927(n) + A131708(n) = 2^n - 1. [Cournot, page 96 last formula, but misprint should be 2^x - 1 rather than 2^p - 1]
(End)
MAPLE
a:= proc(n) option remember; `if`(n=0, 0, 2*a(n-1)+
[-1, 0, 1, 1, 0, -1, -1][1+(n mod 6)])
end:
seq(a(n), n=0..33); # Paul Weisenhorn, May 17 2020
MATHEMATICA
LinearRecurrence[{3, -3, 2}, {0, 0, 1}, 40] (* Harvey P. Dale, Sep 20 2016 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(n, 3*k+2)) /* Michael Somos, Feb 14 2006 */
(PARI) a(n)=if(n<0, 0, ([1, 0, 1; 1, 1, 0; 0, 1, 1]^n)[3, 1]) /* Michael Somos, Feb 14 2006 */
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0, 0] cat Coefficients(R!( x^2/((1-x)^3-x^3) )); // G. C. Greubel, Apr 11 2023
(SageMath)
def A024495(n): return (2^n - chebyshev_U(n, 1/2) - chebyshev_U(n-1, 1/2))/3
[A024495(n) for n in range(41)] # G. C. Greubel, Apr 11 2023
CROSSREFS
Sequences of the form 1/((1-x)^m - x^m): A000079 (m=1,2), this sequence (m=3), A000749 (m=4), A049016 (m=5), A192080 (m=6), A049017 (m=7), A290995 (m=8), A306939 (m=9).
Sequence in context: A251655 A132658 A293320 * A360045 A354695 A293066
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 28 03:10 EDT 2024. Contains 372020 sequences. (Running on oeis4.)