login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A014565 Decimal expansion of rabbit constant. 21
7, 0, 9, 8, 0, 3, 4, 4, 2, 8, 6, 1, 2, 9, 1, 3, 1, 4, 6, 4, 1, 7, 8, 7, 3, 9, 9, 4, 4, 4, 5, 7, 5, 5, 9, 7, 0, 1, 2, 5, 0, 2, 2, 0, 5, 7, 6, 7, 8, 6, 0, 5, 1, 6, 9, 5, 7, 0, 0, 2, 6, 4, 4, 6, 5, 1, 2, 8, 7, 1, 2, 8, 1, 4, 8, 4, 6, 5, 9, 6, 2, 4, 7, 8, 3, 1, 6, 1, 3, 2, 4, 5, 9, 9, 9, 3, 8, 8, 3, 9, 2, 6, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Davison shows that the continued fraction is (essentially) A000301 and proves that this constant is transcendental. - Charles R Greathouse IV, Jul 22 2013
Using Davison's result we can find an alternating series representation for the rabbit constant r as r = 1 - sum {n >= 1} (-1)^(n+1)*(1 + 2^Fibonacci(3*n+1))/( (2^(Fibonacci(3*n - 1)) - 1)*(2^(Fibonacci(3*n + 2)) - 1) ). The series converges rapidly: for example, the first 10 terms of the series give a value for r accurate to more than 1.7 million decimal places. See A005614. - Peter Bala, Nov 11 2013
The rabbit constant is the number having the infinite Fibonacci word A005614 as binary expansion; its continued fraction expansion is A000301 = 2^A000045 (after a leading zero, depending on convention). - M. F. Hasler, Nov 10 2018
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 439.
M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise, New York: W. H. Freeman, 1991.
LINKS
Sean A. Irvine and Joerg Arndt, Table of n, a(n) for n = 0..2000
W. W. Adams and J. L. Davison, A remarkable class of continued fractions, Proc. Amer. Math. Soc. 65 (1977), 194-198.
P. G. Anderson, T. C. Brown, and P. J.-S. Shiue, A simple proof of a remarkable continued fraction identity Proc. Amer. Math. Soc. 123 (1995), 2005-2009.
J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), pp. 29-32.
Martin Griffiths, 96.12 The sum of a series: rational or irrational?, The Mathematical Gazette, Vol. 96, No. 535 (2012), pp. 121-124.
C. Kimberling and K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273.
Eric Weisstein's World of Mathematics, Rabbit Constant.
FORMULA
Equals Sum_{n>=1} 1/2^b(n) where b(n) = floor(n*phi) = A000201(n).
Equals -1 + A073115.
From Peter Bala, Nov 04 2013: (Start)
The results of Adams and Davison 1977 can be used to find a variety of alternative series representations for the rabbit constant r. Here are several examples (phi denotes the golden ratio (1/2)*(1 + sqrt(5))).
r = Sum_{n >= 2} ( floor((n+1)*phi) - floor(n*phi) )/2^n = (1/2)*Sum_{n >= 1} A014675(n)/2^n.
r = Sum_{n >= 1} floor(n/phi)/2^n = Sum_{n >= 1} A005206(n-1)/2^n.
r = ( Sum_{n >= 1} 1/2^floor(n/phi) ) - 2 and r = ( Sum_{n >= 1} floor(n*phi)/2^n ) - 2 = ( Sum_{n >= 1} A000201(n)/2^n ) - 2.
More generally, for integer N >= -1, r = ( Sum_{n >= 1} 1/2^floor(n/(phi + N)) ) - (2*N + 2) and for all integer N, r = ( Sum_{n >= 1} floor(n*(phi + N))/2^n ) - (2*N + 2).
Also r = 1 - Sum_{n >= 1} 1/2^floor(n*phi^2) = 1 - Sum_{n >= 1} 1/2^A001950(n) and r = 1 - Sum_{n >= 1} floor(n*(2 - phi))/2^n = 1 - Sum_{n >= 1} A060144(n)/2^n. (End)
EXAMPLE
0.709803442861291314641787399444575597012502205767...
MATHEMATICA
Take[ RealDigits[ Sum[N[1/2^Floor[k*GoldenRatio], 120], {k, 0, 300}]-1][[1]], 103] (* Jean-François Alcover, Jul 28 2011, after Benoit Cloitre *)
RealDigits[ FromDigits[{Nest[Flatten[# /. {0 -> {1}, 1 -> {1, 0}}] &, {1}, 12], 0}, 2], 10, 111][[1]] (* Robert G. Wilson v, Mar 13 2014 *)
digits = 103; dm = 10; Clear[xi]; xi[b_, m_] := xi[b, m] = RealDigits[ ContinuedFractionK[1, b^Fibonacci[k], {k, 0, m}], 10, digits] // First; xi[2, dm]; xi[2, m = 2 dm]; While[xi[2, m] != xi[2, m - dm], m = m + dm]; xi[2, m] (* Jean-François Alcover, Mar 04 2015, update for versions 7 and up, after advice from Oleg Marichev *)
PROG
(PARI) /* fast divisionless routine from fxtbook */
fa(y, N=17)=
{ my(t, yl, yr, L, R, Lp, Rp);
/* as powerseries correct up to order fib(N+2)-1 */
L=0; R=1; yl=1; yr=y;
for(k=1, N, t=yr; yr*=yl; yl=t; Lp=R; Rp=R+yr*L; L=Lp; R=Rp; );
return( R )
}
a=0.5*fa(0.5) /* Joerg Arndt, Apr 15 2010 */
(PARI) my(r=1, p=(3-sqrt(5))/2, n=1); while(r>r-=1.>>(n\p), n++); A014565=r \\ M. F. Hasler, Nov 10 2018
(PARI) my(f(n)=1.<<fibonacci(n)-1, g(n)=(f(n+2)+2)/f(n)/f(n+3)); 1-g(2)+g(5)-g(8) \\ Illustration of formula from Bala's comment. Using g(8) gives 70 digits; subsequent terms (+g(11), -g(14), +g(17), ...) each multiply the precision by 4.236 ~ A098317 (=> 298, 1259, 5331, ... digits). - M. F. Hasler, Nov 10 2018
CROSSREFS
Sequence in context: A368009 A368497 A348680 * A073115 A176444 A197025
KEYWORD
nonn,cons
AUTHOR
Eric W. Weisstein, Dec 11 1999
EXTENSIONS
More terms from Simon Plouffe, Dec 11 1999
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 20:13 EDT 2024. Contains 372317 sequences. (Running on oeis4.)