login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005246 a(n) = (1 + a(n-1)*a(n-2))/a(n-3), a(0) = a(1) = a(2) = 1.
(Formerly M0829)
32
1, 1, 1, 2, 3, 7, 11, 26, 41, 97, 153, 362, 571, 1351, 2131, 5042, 7953, 18817, 29681, 70226, 110771, 262087, 413403, 978122, 1542841, 3650401, 5757961, 13623482, 21489003, 50843527, 80198051, 189750626, 299303201, 708158977, 1117014753 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
For n >= 4 we have the linear recurrence a(n) = 4*a(n-2) - a(n-4). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 04 2001
Integer solutions to the equation floor(sqrt(3)*x^2) = x*floor(sqrt(3)*x). - Benoit Cloitre, Mar 18 2004
For n > 2, a(n) is the smallest integer > a(n-1) such that sqrt(3)*a(n) is closer to and greater than an integer than sqrt(3)*a(n-1). I.e., a(n) is the smallest integer > a(n-1) such that frac(sqrt(3)*a(n)) < frac(sqrt(3)*a(n-1)). - Benoit Cloitre, Jan 20 2003
The lower principal and intermediate convergents to 3^(1/2), beginning with 1/1, 3/2, 5/3, 12/7, 19/11, form a strictly increasing sequence; essentially, numerators=A143643 and denominators=A005246. - Clark Kimberling, Aug 27 2008
This sequence is a particular case of the following situation: a(0)=1, a(1)=a, a(2)=b with the recurrence relation a(n+3)=(a(n+2)*a(n+1)+q)/a(n) where q is given in Z to have Q=(a*b^2+q*b+a+q)/(a*b) itself in Z. The g.f. is f: f(z)=(1+a*z+(b-Q)*z^2+(a*b+q-a*Q)*z^3)/(1-Q*z^2+z^4); so we have the linear recurrence: a(n+4)=Q*a(n+2)-a(n). The general form of a(n) is given by: a(2*m) = Sum_{p=0..floor(m/2)} (-1)^p*binomial(m-p,p)*Q^(m-2*p) + (b-Q)*Sum_{p=0..floor((m-1)/2)} (-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p) and a(2*m+1) = a*Sum_{p=0..floor(m/2)} (-1)^p*binomial(m-p,p)*Q^(m-2*p) + (a*b+q-a*Q)*Sum_{p=0..floor((m-1)/2)} (-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p). - Richard Choulet, Feb 24 2010
From Tim Monahan, Jul 07 2011: (Start)
In the closed-form formula,
sqrt(2+sqrt(3))^n = ((sqrt(6)+sqrt(2))/2)^n;
-sqrt(2+sqrt(3))^n = ((-sqrt(6)-sqrt(2))/2)^n;
sqrt(2-sqrt(3))^n = ((sqrt(6)-sqrt(2))/2)^n;
-sqrt(2-sqrt(3))^n = ((sqrt(2)-sqrt(6))/2)^n.
(End)
a(n) for n > 1 are the integer square roots of (floor(m^2/3)+1), where the values of m are given by A143643. Also see A082630. - Richard R. Forberg, Nov 14 2013
The a(n) = (1 + a(n-1)*a(n-2))/a(n-3) recursion has the Laurent property. If a(0), a(1), a(2) are variables, then a(n) is a Laurent polynomial (a rational function with a monomial denominator). - Michael Somos, Feb 27 2019
REFERENCES
Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Peter Cameron's Blog, The ADE affair, 3, Posted 23/06/2011.
T. Crilly, Double sequences of positive integers, Math. Gaz., 69 (1985), 263-271.
Enrica Duchi, Andrea Frosini, Renzo Pinzani and Simone Rinaldi, A Note on Rational Succession Rules, J. Integer Seqs., Vol. 6, 2003.
Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
Valentin Ovsienko, Serge Tabachnikov, Dual numbers, weighted quivers, and extended Somos and Gale-Robinson sequences, arXiv:1705.01623 [math.CO], 2017. See p. 10.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
G.f.: (1 + x - 3*x^2 - 2*x^3)/(1 - 4*x^2 + x^4).
Limit_{n->oo} a(2n+1)/a(2n) = (3+sqrt(3))/3 = 1.5773502...; lim_{n->oo} a(2n)/a(2n-1) = (3+sqrt(3))/2 = 2.3660254.... - Benoit Cloitre, Aug 07 2002
A101265(n) = a(n)*a(n+1). - Franklin T. Adams-Watters, Apr 24 2006
a(n) = a(2-n) for all n in Z. - Michael Somos, Nov 15 2006
a(2*n + 1) = A001075(n). a(2*n) = A001835(n). a(2*n + 1) - a(2*n) = a(2*n + 2) - a(2*n + 1) = A001353(n). - Michael Somos, May 24 2012
For n > 2: a(n) = a(n-1) + Sum_{k=1..floor((n-1)/2)} a(2*k). - Reinhard Zumkeller, Dec 16 2007
From Richard Choulet, Feb 24 2010: (Start)
a(2*m) = Sum_{p=0..floor(m/2)} (-1)^p*binomial(m-p,p)*4^(m-2*p) - 3*Sum_{p=0..floor((m-1)/2)} (-1)^p*binomial(m-1-p,p)*4^(m-1-2*p).
a(2*m+1) = Sum_{p=0..floor(m/2)} (-1)^p*binomial(m-p,p)*4^(m-2*p) - 2*Sum_{p=0..floor((m-1)/2)} (-1)^p*binomial(m-1-p,p)*4^(m-1-2*p). (End)
From Tim Monahan, Jul 01 2011: (Start)
Closed form without extra leading 1: ((sqrt(6)+3)*(sqrt(2+sqrt(3))^n+(sqrt(2-sqrt(3))^n))+(3-sqrt(6))*(-sqrt(2+sqrt(3))^n+(-sqrt(2-sqrt(3))^n)))/12.
Closed form with extra leading 1: ((6+3*sqrt(6)-2*sqrt(3)-3*sqrt(2))*(sqrt(2+sqrt(3))^n)+(6+3*sqrt(6)+2*sqrt(3)+3*sqrt(2))*(sqrt(2-sqrt(3))^n)+(6-3*sqrt(6)-2*sqrt(3)+3*sqrt(2))*(-sqrt(2+sqrt(3))^n)+(6-3*sqrt(6)+2*sqrt(3)-3*sqrt(2))*(-sqrt(2-sqrt(3))^n))/24. (End)
a(2*n+2) = Sum_{k = 0..n} 2^k*binomial(n+k,2*k); a(2*n+1) = Sum_{k = 0..n} n/(n+k)*2^k*binomial(n+k,2*k) for n >= 1. Row sums of A211956. - Peter Bala, May 01 2012
a(n) = ((sqrt(2)+sqrt(3)+(-1)^n*(sqrt(2)-sqrt(3)))*sqrt(2+(2-sqrt(3))^n*(2+ sqrt(3))-(-2+sqrt(3))*(2+ sqrt(3))^n))/(4*sqrt(3)). - Gerry Martens, Jun 06 2015
0 = a(n) - 2*a(n+1) + a(n+2) if n is even, 0 = a(n) - 3*a(n+1) + a(n+2) if n is odd for all n in Z. - Michael Somos, Feb 10 2017
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 7*x^5 + 11*x^6 + 26*x^7 + 41*x^8 + ...
From Richard Choulet, Feb 24 2010: (Start)
a(4) = 4^2 - 4^0 - 3*4^1 = 3.
a(7) = 4^3 - 4*binomial(2,1) - 2*(4^2-1) = 26. (End)
MAPLE
A005246:=-(-1-z+2*z**2+z**3)/(1-4*z**2+z**4); # Conjectured by Simon Plouffe in his 1992 dissertation. Gives sequence except for one of the leading 1's.
for q from 1 to 10 do :a:=1:b:=1:Q:=(a*b^2+q*b+a+q)/(a*b): for m from 0 to 15 do U(m):=sum((-1)^p*binomial(m-p, p)*Q^(m-2*p), p=0..floor(m/2))+(b-Q)*sum((-1)^p*binomial(m-1-p, p)*Q^(m-1-2*p), p=0..floor((m-1)/2)):od: for m from 0 to 15 do V(m):=a*sum((-1)^p*binomial(m-p, p)*Q^(m-2*p), p=0..floor(m/2))+(a*b+q-a*Q)*sum((-1)^p*binomial(m-1-p, p)*Q^(m-1-2*p), p=0..floor((m-1)/2)):od:for m from 0 to 15 do W(2*m):=U(m):od:for m from 0 to 14 do W(2*m+1):=V(m):od:seq(W(m), m=0..30):od; # Richard Choulet, Feb 24 2010
MATHEMATICA
RecurrenceTable[{a[0]==a[1]==a[2]==1, a[n]==(1+a[n-1]a[n-2])/a[n-3]}, a, {n, 40}] (* Harvey P. Dale, May 28 2013 *)
a[n_] := Cosh[(n-1)*ArcSinh[1/Sqrt[2]]]*If[EvenQ[n], Sqrt[2/3], 1]; Table[a[n] // FunctionExpand, {n, 0, 34}] (* Jean-François Alcover, Dec 10 2014, after Peter Bala *)
a[ n_] := With[{m = If[ n < 0, 2 - n, n]}, SeriesCoefficient[ (1 + x - 3 x^2 - 2 x^3) / (1 - 4 x^2 + x^4), {x, 0, m}]]; (* Michael Somos, Feb 10 2017 *)
PROG
(PARI) {a(n) = if( n<0, n = 2 - n); polcoeff((1 + x - 3*x^2 - 2*x^3) / (1 - 4*x^2 + x^4) + x * O(x^n), n)}; /* Michael Somos, Nov 15 2006 */
(PARI) {a(n) = real( (2 + quadgen(12))^(n\2) * if( n%2, 1, 1 - 1 / quadgen(12)) )}; /* Michael Somos, May 24 2012 */
(Haskell)
a005246 n = a005246_list !! n
a005246_list = 1 : 1 : 1 : map (+ 1) (zipWith div
(zipWith (*) (drop 2 a005246_list) (tail a005246_list)) a005246_list)
-- Reinhard Zumkeller, Mar 07 2012
CROSSREFS
Bisections are A001835 and A001075.
Cf. A101265. Row sums of A211956.
Cf. A001353.
Sequence in context: A121268 A101173 A294451 * A116406 A354540 A112843
KEYWORD
easy,nonn,nice
AUTHOR
EXTENSIONS
More terms from Michael Somos, Aug 01 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 29 02:29 EDT 2024. Contains 372097 sequences. (Running on oeis4.)