login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002119 Bessel polynomial y_n(-2).
(Formerly M4444 N1880)
22
1, -1, 7, -71, 1001, -18089, 398959, -10391023, 312129649, -10622799089, 403978495031, -16977719590391, 781379079653017, -39085931702241241, 2111421691000680031, -122501544009741683039, 7597207150294985028449, -501538173463478753560673 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Absolute values give denominators of successive convergents to e using continued fraction 1+2/(1+1/(6+1/(10+1/(14+1/(18+1/(22+1/26...)))))).
Absolute values give number of different arrangements of nonnegative integers on a set of n 6-sided dice such that the dice can add to any integer from 0 to 6^n-1. For example when n=2, there are 7 arrangements that can result in any total from 0 to 35. Cf. A273013. The number of sides on the dice only needs to be the product of two distinct primes, of which 6 is the first example. - Elliott Line, Jun 10 2016
Absolute values give number of Krasner factorizations of (x^(6^n)-1)/(x-1) into n polynomials p_i(x), i=1,2,...,n, satisfying p_i(1)=6. In these expressions 6 can be replaced with any product of two distinct primes (Krasner and Ranulac, 1937). - William P. Orrick, Jan 18 2023
Absolute values give number of pairs (s, b) where s is a covering of the 1 X 2n grid with 1 X 2 dimers and equal numbers of red and blue 1 X 1 monomers and b is a bijection between the red monomers and the blue monomers that does not map adjacent monomers to each other. Ilya Gutkovskiy's formula counts such pairs by an inclusion-exclusion argument. The correspondence with Elliott Line's dice problem is that a dimer corresponds to a die containing an arithmetic progression of length 6 and a pair (r, b(r)), where r is a red monomer and b(r) its image under b, corresponds to a die containing the sum of an arithmetic progression of length 2 and an arithmetic progression of length 3. - William P. Orrick, Jan 19 2023
REFERENCES
L. Euler, 1737.
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Leo Chao, Paul DesJarlais and John L Leonard, A binomial identity, via derangements, Math. Gaz. 89 (2005), 268-270.
J. W. L. Glaisher, On Lambert's proof of the irrationality of Pi and on the irrationality of certain other quantities, Reports of British Assoc. Adv. Sci., 1871, pp. 16-18.
M. Krasner and B. Ranulac, Sur une propriété des polynomes de la division du cercle, Comptes Rendus Académie des Sciences Paris, 240:397-399, 1937.
D. H. Lehmer, Arithmetical periodicities of Bessel functions, Annals of Mathematics, 33 (1932): 143-150. The sequence but with all signs positive is on page 149.
D. H. Lehmer, Review of various tables by P. Pederson, Math. Comp., 2 (1946), 68-69.
FORMULA
D-finite with recurrence a(n) = -2(2n-1)*a(n-1) + a(n-2). - T. D. Noe, Oct 26 2006
If y = x + Sum_{k>=2} A005363(k)*x^k/k!, then y = x + Sum_{k>=2} a(k-2)(-y)^k/k!. - Michael Somos, Apr 02 2007
a(-n-1) = a(n). - Michael Somos, Apr 02 2007
a(n) = (1/n!)*Integral_{x>=-1} (-x*(1+x))^n*exp(-(1+x)). - Paul Barry, Apr 19 2010
G.f.: 1/Q(0), where Q(k) = 1 - x + 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
Expansion of exp(x) in powers of y = x*(1 + x): exp(x) = 1 + y - y^2/2! + 7*y^3/3! - 71*y^4/4! + 1001*y^5/5! - .... E.g.f.: (1/sqrt(4*x + 1))*exp(sqrt(4*x + 1)/2 - 1/2) = 1 - x + 7*x^2/2! - 71*x^3/3! + .... - Peter Bala, Dec 15 2013
a(n) = hypergeom([-n, n+1], [], 1). - Peter Luschny, Oct 17 2014
a(n) = sqrt(Pi/exp(1)) * BesselI(1/2+n, 1/2) + (-1)^n * BesselK(1/2+n, 1/2) / sqrt(exp(1)*Pi). - Vaclav Kotesovec, Jul 22 2015
a(n) ~ (-1)^n * 2^(2*n+1/2) * n^n / exp(n+1/2). - Vaclav Kotesovec, Jul 22 2015
From G. C. Greubel, Aug 16 2017: (Start)
G.f.: (1/(1-t))*hypergeometric2f0(1, 1/2; -; -4*t/(1-t)^2).
E.g.f.: (1+4*t)^(-1/2) * exp((sqrt(1+4*t) - 1)/2). (End)
a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*binomial(n+k,k)*k!. - Ilya Gutkovskiy, Nov 24 2017
a(n) = (-1)^n*KummerU(-n, -2*n, -1). - Peter Luschny, May 10 2022
EXAMPLE
Example from William P. Orrick, Jan 19 2023: (Start)
For n=2 the Bessel polynomial is y_2(x) = 1 + 3x + 3x^2 which satisfies y_2(-2) = -7.
The |a(2)|=7 dice pairs are
{{0,1,2,3,4,5}, {0,6,12,18,24,30}},
{{0,1,2,18,19,20}, {0,3,6,9,12,15}},
{{0,1,2,9,10,11}, {0,3,6,18,21,24}},
{{0,1,6,7,12,13}, {0,2,4,18,20,22}},
{{0,1,12,13,24,25}, {0,2,4,6,8,10}},
{{0,1,2,6,7,8}, {0,3,12,15,24,27}},
{{0,1,4,5,8,9}, {0,2,12,14,24,26}}.
The corresponding Krasner factorizations of (x^36-1)/(x-1) are
{(x^6-1)/(x-1), (x^36-1)/(x^6-1)},
{((x^36-1)/(x^18-1))*((x^3-1)/(x-1)), (x^18-1)/(x^3-1)},
{((x^18-1)/(x^9-1))*((x^3-1)/(x-1)), ((x^36-1)/(x^18-1))*((x^9-1)/(x^3-1))},
{((x^18-1)/(x^6-1))*((x^2-1)/(x-1)), ((x^36-1)/(x^18-1))*((x^6-1)/(x^2-1))},
{((x^36-1)/(x^12-1))*((x^2-1)/(x-1)), (x^12-1)/(x^2-1)},
{((x^12-1)/(x^6-1))*((x^3-1)/(x-1)), ((x^36-1)/(x^12-1))*((x^6-1)/(x^3-1))},
{((x^12-1)/(x^4-1))*((x^2-1)/(x-1)), ((x^36-1)/(x^12-1))*((x^4-1)/(x^2-1))}.
The corresponding monomer-dimer configurations, with dimers, red monomers, and blue monomers represented by the symbols '=', 'R', and 'B', and bijections between red and blue monomers given as sets of ordered pairs, are
(==, {}),
(B=R, {(3,1)}),
(BBRR, {(3,1),(4,2)}),
(RBBR, {((1,3),(4,2)}),
(R=B, {(1,3)}),
(BRRB, {(2,4),(3,1)}),
(RRBB, {(1,3),(2,4)}).
(End)
MAPLE
f:=proc(n) option remember; if n <= 1 then 1 else f(n-2)+(4*n-2)*f(n-1); fi; end;
[seq(f(n), n=0..20)]; # This is for the unsigned version. - N. J. A. Sloane, May 09 2016
seq(simplify((-1)^n*KummerU(-n, -2*n, -1)), n = 0..17); # Peter Luschny, May 10 2022
MATHEMATICA
Table[(-1)^k (2k)! Hypergeometric1F1[-k, -2k, -1]/k!, {k, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)
nxt[{n_, a_, b_}]:={n+1, b, a-2b(2n+1)}; NestList[nxt, {1, 1, -1}, 20][[All, 2]] (* Harvey P. Dale, Aug 18 2017 *)
PROG
(PARI) {a(n)= if(n<0, n=-n-1); sum(k=0, n, (2*n-k)!/ (k!*(n-k)!)* (-1)^(n-k) )} /* Michael Somos, Apr 02 2007 */
(PARI) {a(n)= local(A); if(n<0, n= -n-1); A= sqrt(1 +4*x +x*O(x^n)); n!*polcoeff( exp((A-1)/2)/A, n)} /* Michael Somos, Apr 02 2007 */
(PARI) {a(n)= local(A); if(n<0, n= -n-1); n+=2 ; for(k= 1, n, A+= x*O(x^k); A= truncate( (1+x)* exp(A) -1-A) ); A+= x*O(x^n); A-= A^2; -(-1)^n*n!* polcoeff( serreverse(A), n)} /* Michael Somos, Apr 02 2007 */
(Sage)
A002119 = lambda n: hypergeometric([-n, n+1], [], 1)
[simplify(A002119(n)) for n in (0..17)] # Peter Luschny, Oct 17 2014
CROSSREFS
See also A033815.
Numerators of the convergents of e are A001517, which has a similar interpretation to a(n) in terms of monomer-dimer configurations, but omitting the restriction that adjacent monomers not be mapped to each other by the bijection.
Polynomial coefficients are in A001498.
Sequence in context: A268702 A363009 A052390 * A146752 A022518 A113053
KEYWORD
sign,easy,nice
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Apr 03 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 28 02:08 EDT 2024. Contains 372020 sequences. (Running on oeis4.)