login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002005 Number of rooted planar cubic maps with 2n vertices.
(Formerly M3646 N1483)
11
1, 4, 32, 336, 4096, 54912, 786432, 11824384, 184549376, 2966845440, 48855252992, 820675092480, 14018773254144, 242919827374080, 4261707069259776, 75576645116559360, 1353050213048123392, 24428493151359467520, 444370175232646840320, 8138178004138611179520 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Equivalently, number of rooted planar triangulations with 2n faces.
The September 2018 talk by Noam Zeilberger (see link to video) connects three topics (planar maps, Tamari lattices, lambda calculus) and eight sequences: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827. - N. J. A. Sloane, Sep 17 2018
REFERENCES
R. C. Mullin, E. Nemeth and P. J. Schellenberg, The enumeration of almost cubic maps, pp. 281-295 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 1, edited R. C. Mullin et al., 1970.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Valentin Bonzom, Guillaume Chapuy, Maciej Dolega, Enumeration of non-oriented maps via integrability, Alg. Combin. 5 (6) (2022) p 1363-1390, A.3
Mireille Bousquet-Mélou, Counting planar maps, coloured or uncoloured, 23rd British Combinatorial Conference, Jul 2011, Exeter, United Kingdom. 392, pp.1-50, 2011, London Math. Soc. Lecture Note Ser., hal-00653963. See p.13.
Maxim Krikun, Explicit enumeration of triangulations with multiple boundaries, arXiv:0706.0681 [math.CO], 2007. [Comment from Gheorghe Coserea, Dec 26 2015: the formula in the paper for almost trivalent maps is 2 * 4^(k-1) * (3k)!!/ ((k+1)!*(k+2)!!); however, the exponent of 4 should be k not (k-1) i.e. 2 * 4^k * (3k)!! / ((k+1)!*(k+2)!!)]
Noam Zeilberger, A theory of linear typings as flows on 3-valent graphs, arXiv:1804.10540 [cs.LO], 2018.
Noam Zeilberger, A Sequent Calculus for a Semi-Associative Law, arXiv preprint 1803.10030 [math.LO], March 2018 (A revised version of a 2017 conference paper).
Noam Zeilberger, A proof-theoretic analysis of the rotation lattice of binary trees, Part 1 (video), Part 2, Rutgers Experimental Math Seminar, Sep 13 2018.
Jian Zhou, Fat and Thin Emergent Geometries of Hermitian One-Matrix Models, arXiv:1810.03883 [math-ph], 2018.
FORMULA
a(n) = 2^(2*n+1)*(3*n)!!/((n+2)!*n!!). - Sean A. Irvine, May 19 2013
a(n) ~ sqrt(6/Pi) * n^(-5/2) * (12*sqrt(3))^n. - Gheorghe Coserea, Feb 25 2016
G.f.: (96*x - 1 + 2F1(-2/3, -1/3; 1/2; 432*x^2) - 96*x*2F1(-1/6, 1/6; 3/2; 432*x^2))/(192*x^2). - Benedict W. J. Irwin, Aug 07 2016
From Gheorghe Coserea, Jun 13 2017: (Start)
G.f. y(x) satisfies:
x*(1-432*x^2)*deriv(y,x) = 64*x^2*y^2 + (288*x^2 - 64*x - 1)*y + 72*x + 1.
0 = 64*x^3*y^3 + x*(1-96*x)*y^2 + (30*x-1)*y - 27*x + 1.
(End).
D-finite with recurrence (n+2)*(n+1)*a(n) -48*(3*n-2)*(3*n-4)*a(n-2)=0. - R. J. Mathar, Feb 08 2021
From Karol A. Penson and Katarzyna Gorska (katarzyna.gorska@ifj.edu.pl), Nov 02 2022: (Start)
a(n) = Integral_{x=0..12*sqrt(3)} x^n*W(x), where
W(x) = (T1(x) + T2(x)) / T3(x), and
T1(x) = -x^(2/3) * (108 + sqrt(3) * sqrt(432 - x^2));
T2(x) = 3^(1/6)*(36+sqrt(3)*sqrt(432-x^2))^(2/3) * (-432+x^2+36*sqrt(3)* sqrt(432-x^2)) / sqrt(432-x^2);
T3(x) = (128*3^(5/6)*Pi*x^(1/3)*(36+sqrt(3)*sqrt(432-x^2))^(1/3)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem. Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0, with the singularity x^(-1/3), and for x > 0 is monotonically decreasing to zero at x = 12*sqrt(3). (End)
a(n) = 2^(3*n + 1)*binomial(n*3/2, n)/((n + 1)*(n + 2)) = A358367(n) / A000217(n + 1). - Peter Luschny, Nov 14 2022
MAPLE
seq(2*8^n*binomial(n*3/2, n)/((n + 2)*(n + 1)), n = 0..19); # Peter Luschny, Nov 14 2022
MATHEMATICA
Table[2^(2 n + 1) (3 n)!!/((n + 2)! n!!), {n, 0, 20}] (* Vincenzo Librandi, Dec 28 2015 *)
CoefficientList[Series[(-1 + 96 z + Hypergeometric2F1[-2/3, -1/3, 1/2, 432z^2]- 96 z Hypergeometric2F1[-1/6, 1/6, 3/2, 432z^2])/(192 z^2), {z, 0, 10}], z] (* Benedict W. J. Irwin, Aug 07 2016 *)
PROG
(PARI) factorial2(n) = my(x = (2^(n\2)*(n\2)!)); if (n%2, n!/x, x);
a(n) = 2^(2*n+1)*factorial2(3*n)/((n+2)!*factorial2(n));
vector(20, i, a(i-1))
\\ test: y = Ser(vector(201, n, a(n-1))); x*(1-432*x^2)*y' == 64*x^2*y^2 + (288*x^2 - 64*x - 1)*y + 72*x + 1
\\ Gheorghe Coserea, Jun 13 2017
CROSSREFS
Sequences mentioned in the Noam Zeilberger 2018 video: A000168, A000260, A000309, A000698, A000699, A002005, A062980, A267827.
Column k=0 of A266240.
Sequence in context: A362676 A272823 A371655 * A123309 A186391 A231446
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, May 19 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 28 19:40 EDT 2024. Contains 372092 sequences. (Running on oeis4.)