login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: keyword:new
Displaying 1-10 of 426 results found. page 1 2 3 4 5 6 7 8 9 10 ... 43
     Sort: relevance | references | number | modified | created      Format: long | short | data
A371715 G.f. A(x) = Sum_{n>=0} a(n)*x^n where a(n) = Sum_{k=0..n} ( [x^k] A(2*x)^(n+1) (mod 2^(n+1)) ) for n >= 0 with a(0) = 1. +0
0
1, 1, 7, 17, 55, 113, 135, 321, 2103, 3217, 8295, 18145, 33687, 74289, 128455, 321153, 870135, 1201105, 3696423, 6715937, 17466967, 31467889, 72111239, 173224385, 382697911, 552100625, 1442627047, 2558102881, 3487807767, 11651874993, 21616075591, 47612431617, 108598963319 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
What is the limit a(n)/(n*2^n) ? Does it exist ?. - Vaclav Kotesovec, May 03 2024
LINKS
Vaclav Kotesovec, Plot of a(n)/(n*2^n)
EXAMPLE
G.f.: A(x) = 1 + x + 7*x^2 + 17*x^3 + 55*x^4 + 113*x^5 + 135*x^6 + 321*x^7 + 2103*x^8 + 3217*x^9 + 8295*x^10 + 18145*x^11 + 33687*x^12 + ...
The table of coefficients of x^k in A(2*x)^n begins:
n=1: [1, 2, 28, 136, 880, 3616, 8640, ...];
n=2: [1, 4, 60, 384, 3088, 18368, 99520, ...];
n=3: [1, 6, 96, 752, 6960, 50592, 350848, ...];
n=4: [1, 8, 136, 1248, 12848, 107520, 864000, ...];
n=5: [1, 10, 180, 1880, 21120, 197312, 1765760, ...];
n=6: [1, 12, 228, 2656, 32160, 329088, 3210624, ...];
n=7: [1, 14, 280, 3584, 46368, 512960, 5383168, ...];
n=8: [1, 16, 336, 4672, 64160, 760064, 8500480, ...];
...
from which each term in row n may be reduced modulo 2^n to form the following triangle (trailing zeros suppressed):
A(2*x) (mod 2): [1];
A(2*x)^2 (mod 2^2): [1, 0];
A(2*x)^3 (mod 2^3): [1, 6, 0];
A(2*x)^4 (mod 2^4): [1, 8, 8, 0];
A(2*x)^5 (mod 2^5): [1, 10, 20, 24, 0];
A(2*x)^6 (mod 2^6): [1, 12, 36, 32, 32, 0];
A(2*x)^7 (mod 2^7): [1, 14, 24, 0, 32, 64, 0];
A(2*x)^8 (mod 2^8): [1, 16, 80, 64, 160, 0, 0, 0];
A(2*x)^9 (mod 2^9): [1, 18, 396, 296, 464, 224, 320, 384, 0];
A(2*x)^10 (mod 2^10): [1, 20, 460, 192, 624, 832, 64, 512, 512, 0];
A(2*x)^11 (mod 2^11): [1, 22, 528, 784, 80, 1120, 1664, 1536, 1536, 1024, 0];
A(2*x)^12 (mod 2^12): [1, 24, 600, 2592, 3920, 3328, 2048, 2048, 3584, 0, 0, 0]; ...
The row sums of the above triangle form this sequence.
PROG
(PARI) /* Returns vector A of N terms */
{N = 40; A=vector(N); A[1]=1; for(n=2, #A, A[n]=1; A[n] = sum(k=0, n-1, ( polcoeff( Ser(A)^n, k)*2^k )%(2^n) ) ); A}
KEYWORD
nonn,new
AUTHOR
Paul D. Hanna, Apr 30 2024
STATUS
approved
A371709 Expansion of g.f. A(x) satisfying A( x*A(x)^2 + x*A(x)^3 ) = A(x)^3. +0
0
1, 1, 1, 2, 6, 16, 39, 99, 271, 764, 2157, 6128, 17658, 51534, 151635, 448962, 1337493, 4008040, 12072594, 36524898, 110943633, 338218626, 1034509917, 3173811240, 9763898994, 30113782641, 93094164244, 288415278638, 895332445053, 2784580242557, 8675408291598, 27072326322939 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
a(3^n) == 1 (mod 3) for n >= 0.
a(2*3^n) == 1 (mod 3) for n >= 0.
a(n) == 2 (mod 3) iff n is the sum of 2 distinct powers of 3 (A038464).
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A( x*A(x)^2*(1 + A(x)) ) = A(x)^3.
(2) A(x) = x * Product_{n>=0} (1 + A(x)^(3^n)).
(3) A(x) = Series_Reversion( x / Product_{n>=0} (1 + x^(3^n)) ).
a(n) ~ c * d^n / n^(3/2), where d = 3.2753449994351908157330968510747739... and c = 0.1559869008021616116037651076359... - Vaclav Kotesovec, May 03 2024
The radius of convergence r of g.f. A(x) and A(r) satisfy A(r) = 1 / Sum_{n>=0} 3^n * A(r)^(3^n-1) / (1 + A(r)^(3^n)) and r = A(r) / Product_{n>=0} (1 + A(r)^(3^n)), where r = 0.30531134893345362211... = 1/d (d is given above) and A(r) = 0.600582105427215700175254768411726892599... - Paul D. Hanna, May 03 2024
EXAMPLE
G.f. A(x) = x + x^2 + x^3 + 2*x^4 + 6*x^5 + 16*x^6 + 39*x^7 + 99*x^8 + 271*x^9 + 764*x^10 + 2157*x^11 + 6128*x^12 + 17658*x^13 + 51534*x^14 + 151635*x^15 + 448962*x^16 + ...
where A( x*A(x)^2*(1 + A(x)) ) = A(x)^3.
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 17*x^6 + 48*x^7 + 126*x^8 + 332*x^9 + 918*x^10 + 2616*x^11 + 7504*x^12 + ...
A(x)^3 = x^3 + 3*x^4 + 6*x^5 + 13*x^6 + 36*x^7 + 105*x^8 + 292*x^9 + 801*x^10 + 2256*x^11 + 6515*x^12 + 18981*x^13 + ...
A(x)^2 + A(x)^3 = x^2 + 3*x^3 + 6*x^4 + 12*x^5 + 30*x^6 + 84*x^7 + 231*x^8 + 624*x^9 + 1719*x^10 + 4872*x^11 + 14019*x^12 + 40599*x^13 + ...
Let B(x) be the series reversion of g.f. A(x), B(A(x)) = x, then
B(x) * (1+x)/(1+x^3) = x - 2*x^4 + 3*x^7 - 5*x^10 + 7*x^13 - 9*x^16 + 12*x^19 - 15*x^22 + 18*x^25 - 23*x^28 + ... + (-1)^n*A005704(n)*x^(3*n+1) + ...
where A005704 is the number of partitions of 3*n into powers of 3.
We can show that g.f. A(x) = A( x*A(x)^2*(1 + A(x)) )^(1/3) satisfies
(2) A(x) = x * Product_{n>=0} (1 + A(x)^(3^n))
by substituting x*A(x)^2*(1 + A(x)) for x in (2) to obtain
A(x)^3 = x * A(x)^2*(1 + A(x)) * Product_{n>=1} (1 + A(x)^(3^n))
which is equivalent to formula (2).
SPECIFIC VALUES.
A(3/10) = 0.526165645044542830201162330432965674027415264612114520...
A(1/4) = 0.353259384374080248921564026412797625837830114153200664...
A(1/5) = 0.255218141344695821239609680309162895225297482063273545...
A(t) = 1/2 and A(t*3/8) = 1/8 at t = (1/2)/Product_{n>=0} (1 + 1/2^(3^n)) = 0.295718718466711580562679377308518930409875701753934072...
A(t) = 1/3 and A(t*4/27) = 1/27 at t = (1/3)/Product_{n>=0} (1 + 1/3^(3^n)) = 0.241059181496179959557718992589733756750585121455883861...
A(t) = 1/4 and A(t*5/64) = 1/64 at t = (1/4)/Product_{n>=0} (1 + 1/4^(3^n)) = 0.196922325724019432212969925740117827612003158137366017...
PROG
(PARI) /* Using series reversion of x/Product_{n>=0} (1 + x^(3^n)) */
{a(n) = my(A); A = serreverse( x/prod(k=0, ceil(log(n)/log(3)), (1 + x^(3^k) +x*O(x^n)) ) ); polcoeff(A, n)}
for(n=1, 35, print1(a(n), ", "))
(PARI) /* Using A(x)^3 = A( x*A(x)^2 + x*A(x)^3 ) */
{a(n) = my(A=[1], F); for(i=1, n, A = concat(A, 0); F = x*Ser(A);
A[#A] = polcoeff( subst(F, x, x*F^2 + x*F^3 ) - F^3, #A+2) ); A[n]}
for(n=1, 35, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Paul D. Hanna, May 02 2024
STATUS
approved
A371505 Number of sub-monoids of the monoid of uniform block permutations of size n that contain the symmetric group S_n. +0
0
1, 2, 3, 6, 10, 31, 63, 287, 1099, 8640, 62658, 1546891, 29789119, 2525655957 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Also equal to the number of anti-chains in the poset of integer partitions of k not equal to (1^k) where mu < lambda iff mu is coarser than lambda and r(mu) >= r(lambda) where r(lambda) = smallest part of lambda not equal to 1.
LINKS
D. G. FitzGerald, A presentation for the monoid of uniform block permutations, Bulletin of the Australian Mathematical Society, 68(2) (2003), 317--324.
R. Orellana, F. Saliola, A. Schilling and M. Zabrocki, Plethysm and the algebra of uniform block permutations, Alg. Comb., Volume 5, no. 5 (2022), pp. 1165--1203.
EXAMPLE
a(3) = 3 because the uniform block permutations of size 3; S_3; and the monoid consisting of S_3 and the element with one block are the only three sub-monoids.
KEYWORD
nonn,more,new
AUTHOR
Mike Zabrocki, Apr 17 2024
STATUS
approved
A372304 Binomial transform of the Gray code sequence. +0
0
0, 1, 5, 14, 36, 92, 228, 536, 1200, 2608, 5624, 12224, 26920, 59824, 133024, 293504, 638816, 1367488, 2877728, 5962112, 12198000, 24748192, 50041312, 101366272, 206655440, 425423136, 885598720, 1863228544, 3953671808, 8436151552, 18042976640, 38567833600 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Also second binomial transform of A109629.
LINKS
Wikipedia, Gray code
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k) * A003188(k).
MAPLE
g:= proc(n) g(n):= Bits[Xor](n, iquo(n, 2)) end:
a:= n-> add(binomial(n, k)*g(k), k=0..n):
seq(a(n), n=0..40);
PROG
(Python)
from math import comb
def A372304(n): return sum(comb(n, k)*(k^k>>1) for k in range(n+1)) # Chai Wah Wu, May 02 2024
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Alois P. Heinz, May 02 2024
STATUS
approved
A372100 a(n) = 2*A000120(3^k) - A070939(3^k) with k = A372099(n). +0
0
1, 2, 3, 4, 8, 17, 23, 29, 38, 39, 44, 56, 57, 58, 91, 114, 145, 147, 156, 168, 182, 208, 219, 239, 277, 297, 300, 307, 331, 360, 367, 442, 452, 477, 487, 492, 507, 513, 568, 571, 614, 893, 963, 1275, 1283, 1288, 1440, 1563, 1702, 1957, 2019, 2440, 2471, 2566, 3004 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
a(n)/2 are the differences at supporting points ​​of the upper envelope of the scatter band of the deviation of the binary weight of 3^k from half the length of the corresponding binary number.
LINKS
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Hugo Pfoertner, Apr 25 2024
STATUS
approved
A372099 Exponents k where A000120(3^k) - A070939(3^k)/2 reaches a new maximum. +0
0
0, 1, 3, 5, 11, 27, 71, 119, 140, 158, 198, 218, 441, 537, 538, 868, 1092, 2128, 2294, 2343, 2811, 2911, 3849, 4003, 4655, 5079, 5279, 5920, 6269, 6603, 10181, 10574, 12801, 12803, 15563, 15784, 16054, 16253, 17127, 18257, 20187, 21934, 34633, 49209, 76791, 78938 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
These are the k-values ​​of the upper envelope of the scatter band of the deviation of the binary weight of 3^k from half the length of the corresponding binary number. The corresponding differences are given in A372100.
LINKS
Hugo Pfoertner, Illustration of scatter band bounded by lower and upper records, up to exponents k=8.5*10^6.
PROG
(PARI) a372099(upto) = {my(dm=oo); for (k=0, upto, my (p=3^k, h=hammingweight(p), b=#binary(p)/2, d=b-h); if (d<dm, print1(k, ", "); dm=d))};
a372099(80000)
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Hugo Pfoertner, Apr 25 2024
STATUS
approved
A372098 a(n) = A070939(3^k) - 2*A000120(3^k) with k = A372097(n). +0
0
-1, 0, 1, 2, 4, 7, 8, 12, 15, 18, 25, 26, 30, 51, 75, 78, 84, 129, 133, 148, 170, 180, 183, 189, 209, 265, 279, 285, 287, 336, 369, 388, 406, 412, 445, 469, 496, 581, 711, 737, 741, 742, 873, 939, 994, 1044, 1078, 1111, 1157, 1158, 1492, 1636, 1767, 1914, 1933 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
a(n)/2 are the negated differences at supporting points ​​of the lower envelope of the scatter band of the deviation of the binary weight of 3^k from half the length of the corresponding binary number.
LINKS
CROSSREFS
KEYWORD
sign,new
AUTHOR
Hugo Pfoertner, Apr 25 2024
STATUS
approved
A372097 Exponents k where A000120(3^k) - A070939(3^k)/2 reaches a new minimum. +0
0
0, 2, 4, 7, 16, 24, 40, 49, 53, 102, 104, 126, 174, 226, 379, 768, 831, 832, 1439, 1452, 1914, 2291, 2731, 3000, 3363, 3472, 5608, 5883, 6725, 6787, 7438, 8786, 10280, 11948, 12190, 13135, 15170, 15645, 22407, 26232, 27099, 32773, 33085, 40189, 40523, 48068, 51187 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
These are the k-values ​​of the lower envelope of the scatter band of the deviation of the binary weight of 3^k from half the length of the corresponding binary number. The corresponding negated differences are given in A372098.
LINKS
Hugo Pfoertner, Illustration of scatter band bounded by lower and upper records, up to exponents k=8*10^6.
PROG
(PARI) a372097(upto) = {my (dm=-oo); for (k=0, upto, my (p=3^k, h=hammingweight(p), b=#binary(p)/2, d=b-h); if (d>dm, print1(k, ", "); dm=d))};
a372097(60000)
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Hugo Pfoertner, Apr 25 2024
STATUS
approved
A372264 a(n) = n! - n^2 + 2n - 1. +0
0
1, 1, 2, 15, 104, 695, 5004, 40271, 362816, 3628719, 39916700, 479001479, 6227020656, 87178291031, 1307674367804, 20922789887775, 355687428095744, 6402373705727711, 121645100408831676, 2432902008176639639, 51090942171709439600, 1124000727777607679559, 25852016738884976639516 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
The number of distinct cards in a deck that has each card twice to perform the n-card trick, where the assistant chooses the hidden card. This number corresponds to a particular strategy, where if there is a duplicate card, then the assistant puts one of those duplicates on the far left and hides the other. The assistant then arranges all the other cards in nondecreasing order. If there are no duplicates, the strategy is similar to the standard one.
LINKS
Michael Kleber and Ravi Vakil, The best card trick, The Mathematical Intelligencer 24 (2002), 9-11.
MATHEMATICA
Table[(n! - n^2 + 2 n - 1), {n, 1, 25}]
PROG
(Python)
from math import factorial
def A372264(n): return factorial(n)-(n-1)**2 # Chai Wah Wu, May 02 2024
CROSSREFS
KEYWORD
nonn,easy,new
AUTHOR
Tanya Khovanova and the MIT PRIMES STEP junior group, Apr 24 2024
STATUS
approved
A370612 The smallest number whose prime factor concatenation, when written in base n, does not contain 0 and contains all digits 1,...,(n-1) at least once. +0
0
3, 5, 14, 133, 706, 2490, 24258, 217230, 2992890, 24674730, 647850030 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
All terms are squarefree. Many thanks to Michael Branicky for pointing out errors in the terms in the original submission.
LINKS
FORMULA
(n-1)! <= a(n) <= A371194(n).
EXAMPLE
a(2) = 3 = 3 whose prime factors in base 2 is: 11.
a(3) = 5 = 5 whose prime factors in base 3 is: 12.
a(4) = 14 = 2*7 whose prime factors in base 4 is: 2, 13.
a(5) = 133 = 7*19 whose prime factors in base 5 is: 12, 34.
a(6) = 706 = 2*353 whose prime factors in base 6 is: 2, 1345.
a(7) = 2490 = 2*3*5*83 whose prime factors in base 7 is: 2, 3, 5, 146.
a(8) = 24258 = 2*3*13*311 whose prime factors in base 8 is: 2, 3, 15, 467.
a(9) = 217230 = 2*3*5*13*557 whose prime factors in base 9 is: 2, 3, 5, 14, 678.
a(10) = 2992890 = 2*3*5*67*1489.
a(11) = 24674730 = 2*3*5*19*73*593 whose prime factors in base 11 is: 2, 3, 5, 18, 67, 49a.
a(12) = 647850030 = 2*3*5*19*1136579 whose prime factors in base 12 is: 2, 3, 5, 17, 4698ab.
PROG
(Python)
from math import factorial
from itertools import count
from sympy import primefactors
from sympy.ntheory import digits
def A370612(n): return next(k for k in count(max(factorial(n-1), 2)) if 0 not in (s:=set.union(*(set(digits(p, n)[1:]) for p in primefactors(k)))) and len(s) == n-1)
CROSSREFS
KEYWORD
nonn,base,more,new
AUTHOR
Chai Wah Wu, Apr 30 2024
STATUS
approved
page 1 2 3 4 5 6 7 8 9 10 ... 43

Search completed in 0.127 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 3 07:04 EDT 2024. Contains 372206 sequences. (Running on oeis4.)