login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A370915 A(n, k) = 4^n*Pochhammer(k/4, n). Square array read by ascending antidiagonals. 4
1, 0, 1, 0, 1, 1, 0, 5, 2, 1, 0, 45, 12, 3, 1, 0, 585, 120, 21, 4, 1, 0, 9945, 1680, 231, 32, 5, 1, 0, 208845, 30240, 3465, 384, 45, 6, 1, 0, 5221125, 665280, 65835, 6144, 585, 60, 7, 1, 0, 151412625, 17297280, 1514205, 122880, 9945, 840, 77, 8, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
The sequence of square arrays A(m, n, k) starts: A094587 (m = 1), A370419 (m = 2), A371077(m = 3), this array (m = 4).
LINKS
FORMULA
A(n, k) = 4^n*Product_{j=0..n-1} (j + k/4).
A(n, k) = 4^n*Gamma(k/4 + n) / Gamma(k/4) for k >= 1.
The exponential generating function for column k is (1 - 4*x)^(-k/4). But much more is true: (1 - m*x)^(-k/m) are the exponential generating functions for the columns of the arrays A(m, n, k) = m^n*Pochhammer(k/m, n).
The polynomials P(n, x) = Sum_{k=0..n} Stirling1(n, k)*(-4)^(n-k)*x^k are ordinary generating functions for row n, i.e., A(n, k) = P(n, k).
In A370419 Werner Schulte pointed out how A371025 is related to the LU decomposition of A370419. Here the same procedure can be used and amounts to A = A371026 * transpose(binomial triangle), where '*' denotes matrix multiplication. See the Maple section for an implementation.
EXAMPLE
The array starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
[2] 0, 5, 12, 21, 32, 45, 60, 77, 96, ...
[3] 0, 45, 120, 231, 384, 585, 840, 1155, 1536, ...
[4] 0, 585, 1680, 3465, 6144, 9945, 15120, 21945, 30720, ...
[5] 0, 9945, 30240, 65835, 122880, 208845, 332640, 504735, 737280, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 5, 2, 1;
[4] 0, 45, 12, 3, 1;
[5] 0, 585, 120, 21, 4, 1;
[6] 0, 9945, 1680, 231, 32, 5, 1;
[7] 0, 208845, 30240, 3465, 384, 45, 6, 1;
MAPLE
A := (n, k) -> 4^n*pochhammer(k/4, n):
for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
# Using the exponential generating functions of the columns:
EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 4*x)^(-k/4);
ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
seq(lprint(EGFcol(n, 9)), n = 0..5);
# Using the generating polynomials for the rows:
P := (n, x) -> local k; add(Stirling1(n, k)*(-4)^(n - k)*x^k, k=0..n):
seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
# Implementing the LU decomposition of A:
with(LinearAlgebra):
L := Matrix(7, 7, (n, k) -> A371026(n-1, k-1)):
U := Matrix(7, 7, (n, k) -> binomial(n-1, k-1)):
MatrixMatrixMultiply(L, Transpose(U));
MATHEMATICA
A[n_, k_] := 4^n * Pochhammer[k/4, n]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 06 2024 *)
PROG
(SageMath)
def A(n, k): return 4**n * rising_factorial(k/4, n)
for n in range(6): print([A(n, k) for k in range(9)])
CROSSREFS
Similar square arrays: A094587, A370419, A371077.
Cf. A370913 (row sums of triangle), A371026.
Sequence in context: A106266 A334367 A367184 * A326327 A113103 A033325
KEYWORD
nonn,tabl,easy
AUTHOR
Peter Luschny, Mar 06 2024
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 10 06:02 EDT 2024. Contains 372356 sequences. (Running on oeis4.)