The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A364506 Square array read by ascending antidiagonals: T(n,k) = (2*k)!/k! * ( (2*n*k)! * ((2*n+1)*k)! )/( (n*k)!^2 * ((n+1)*k)!^2 ). 7

%I #21 Aug 24 2023 07:48:50

%S 1,1,2,1,6,6,1,40,90,20,1,350,5880,1680,70,1,3528,594594,1101100,

%T 34650,252,1,38808,75088728,1299170600,229265400,756756,924,1,453024,

%U 10861066216,2066315135040,3164045050530,50678855040,17153136,3432,1,5521230,1721929279200,3943172216808000

%N Square array read by ascending antidiagonals: T(n,k) = (2*k)!/k! * ( (2*n*k)! * ((2*n+1)*k)! )/( (n*k)!^2 * ((n+1)*k)!^2 ).

%C Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_k(c, d) = (c_1*k)!*(c_2*k)!* ... *(c_K*k)!/ ( (d_1*k)!*(d_2*k)!* ... *(d_L*k)! ) and ask whether it is integral for all k >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1. Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.

%C Each row sequence of the present table is an integral factorial ratio sequence of height 2.

%C It is known that both row 0, the central binomial numbers, and row 1, the de Bruijn numbers, satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that all the row sequences of the table satisfy the same supercongruences.

%H J. W. Bober, <a href="https://arxiv.org/abs/0709.1977">Factorial ratios, hypergeometric series, and a family of step functions</a>, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., 79, Issue 2, (2009), 422-444.

%H K. Soundararajan, <a href="https://doi.org/10.1098/rsta.2018.0444">Integral factorial ratios: irreducible examples with height larger than 1</a>, Phil. Trans. Royal Soc., A378: 2018044, 2019.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Dixon%27s_identity">Dixon's identity</a>

%F T(n,k) = Sum_{i = -k..k} (-1)^i * binomial(2*k, k+i) * binomial(2*n*k, n*k+i)^2 (shows that the table entries are integers).

%F For n >= 1, T(n,k) = (-1)^k * binomial(2*n*k, (n+1)*k)^2 * hypergeom([-2*k, -(n+1)*k, -(n+1)*k], [1 + (n-1)*k, 1 + (n-1)*k], 1) = (2*k)!/k! * ( (2*n*k)! * ((2*n+1)*k)! )/( (n*k)!^2 * ((n+1)*k)!^2 ) by Dixon's 3F2 summation theorem.

%F T(n,k) = (-1)^k * [x^((n + 1)*k)] ( (1 - x)^(2*(n+1)*k) * Legendre_P(2*n*k, (1 + x)/(1 - x)) ). - _Peter Bala_, Aug 15 2023

%e Square array begins:

%e n\k| 0 1 2 3 4 5

%e - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

%e 0 | 1 2 6 20 70 252 ...

%e 1 | 1 6 90 1680 34650 756756 ...

%e 2 | 1 40 5880 1101100 229265400 50678855040 ...

%e 3 | 1 350 594594 1299170600 3164045050530 8188909171581600 ...

%e 4 | 1 3528 75088728 2066315135040 63464046079757400 ...

%e 5 | 1 38808 ...

%p # display as a square array

%p T(n,k) := (2*k)!/k! * ( (2*n*k)! * ((2*n+1)*k)! )/((n*k)!^2 * ((n+1)*k)!^2):

%p seq( print(seq(T(n,k), k = 0..10)), n = 0..10);

%p # display as a sequence

%p seq( seq(T(n-k,k), k = 0..n), n = 0..10);

%Y A000984 (row 0), A006480 (row 1), A364507 (row 2), A364508 (row 3). Cf. A364303, A364509, A365025.

%K nonn,tabl,easy

%O 0,3

%A _Peter Bala_, Jul 27 2023

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 7 09:31 EDT 2024. Contains 373162 sequences. (Running on oeis4.)