The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A359349 The initial bits, written from left to right, in the 2-adic limit of the mod 2^e value of the odd factor of (2^e)!. 1
1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
1
COMMENTS
Here we refer to the table in the Example, in which the bits of our number, called stable bits, appear to the left of the space. Here is a conjectured relationship between the stable bits starting at any point and the unstable bits on the previous line of the table. There is a 2-adic integer K such that, for any d and n > d, uns(n,d) + K = stab(n+1,d) mod 2^d. Here uns(n,d) is the number whose backwards binary expansion (BBE) is the first d bits after the space on line n, and stab(n+1,d) is the number whose BBE is bits (n+1) to (n+d) of our number, where the numbering of the bits starts at 0. The BBE of K begins 1011011. For example, the BBE of uns(17,7) is 0101001 and that of stab(18,7) is 1110110. Perform the binary addition uns(17,7) + K from left to right on these.
If g[n] = (2^n)!/2^(2^n-1), then
stab(n+1,d) = (g[n+1+d] - (g[n+1+d] mod 2^(n+2)))/ 2^(n+2) mod 2^d, while
uns(n,d) = (g[n] - (g[n] mod 2^(n+1)))/2^(n+1) mod 2^d.
From Jon E. Schoenfield, Jul 22 2023: (Start)
For any positive integer e, let f(e) be the odd part of (2^e)!, i.e., f(e) = (2^e)!/2^(2^e - 1), and let h(m) be the product of all m-bit odd numbers, i.e., h(m) = Product_{j odd, j = 2^(m-1) + 1 .. 2^m - 1} j for m >= 2. Then f(e) = Product_{m=2..e} h(m)^(e+1-m).
Thus, the B least significant bits of the odd part of (2^e)! -- i.e., f(e) mod 2^B -- can be computed as Product_{m=2..e} h(m)^(e+1-m) mod 2^B (where only the remainder modulo 2^B is retained at each multiplication).
But computing h(m) mod 2^B can become time-consuming as m gets larger, because there are 2^(m-2) consecutive odd numbers to be multiplied. However, if the following conjecture holds, then there is a much faster way to compute those products mod 2^B, depending on the values of e and B.
Conjecture: for all e,B such that 3 <= e < B <= 3*e - 5,
Product_{j odd, j = 2^(e-1) + 1 .. 2^e - 1) ==
(Product_{j odd, j = 2^(e-1) + 1 .. 2^(e-1) + 2^d - 1)^(2^(e-1-d)) (mod 2^B)
where d = 2 + floor((B-e)/2).
(When d < e-1, the product on the right-hand side of the conjectured congruence requires only 1/2^(e-1-d) as many multiplications to compute, after which that product merely needs to be squared one or more times, with the residue mod 2^B taken after each squaring, so this can be much faster than taking the product on the left-hand side of the conjectured congruence.)
(End)
LINKS
Donald M. Davis, Binomial coefficients involving infinite powers of primes, arXiv:1301.6285 [math.NT], 2013.
Donald M. Davis, Binomial coefficients involving infinite powers of primes, Amer Math Monthly 121 (2014) 734-737.
Jon E. Schoenfield, Magma program for calculating ((2^e)! / 2^(2^e - 1)) mod 2^40 for e = 1..28 and listing the bits (see table in Example section).
EXAMPLE
The odd part of (2^4)! is 3*(5*3*7)*(9*5*11*3*13*7*15) = 3^3*(5*7)^2*(9*11*13*15), which explains the Maple program below.
From Jon E. Schoenfield, Jul 07 2023: (Start)
The table below shows, for e = 2..40, the 64 least significant bits of the odd part of (2^e)!, with the least significant bit at the left end, and with a space inserted immediately after the (e+1)st bit. For every row after the e=1 row, the first e+1 bits appear to have converged to their final values, and the (e+2)nd bit is the opposite of its apparent limiting value.
.
e | 64 least significant bits of (2^e)! / 2^(2^e - 1)
---+------------------------------------------------------------------
2 | 110 0000000000000000000000000000000000000000000000000000000000000
3 | 1101 110010000000000000000000000000000000000000000000000000000000
4 | 11010 11101110111011100000110010000000000000000000000000000000000
5 | 110100 1011001110100011000001101010001001011100110001110101010100
6 | 1101000 000000001101000110100010110011110010011111011101100011000
7 | 11010001 10010101001010001010001101011100101011111100000011100010
8 | 110100010 0111100111001000110000010011101001010011011110111101110
9 | 1101000101 000110101110110000001011000011110010110111000000001101
10 | 11010001011 10101101100010111001010101001000111000001110000010111
11 | 110100010110 0010011111110101111010110111011111110111111000001001
12 | 1101000101101 110111110000001100111011011001001110011110011100011
13 | 11010001011010 11100001101100011101011000100010110100010111101000
14 | 110100010110100 1011001111011110110100001011000011010110110001101
15 | 1101000101101000 000011110100000100110000000000101000111010111100
16 | 11010001011010001 10000001011001001111011101000110001100111111001
17 | 110100010110100010 0101001000011101001001001110110111101010011110
18 | 1101000101101000101 011101001000000000010011011001011111000011010
19 | 11010001011010001011 00000101101001010101010110010100110101001110
20 | 110100010110100010111 1001101111101111101111001000000000100100001
21 | 1101000101101000101110 011011110000010111010010100110010110010001
22 | 11010001011010001011101 00100001101011100101101110111100001011110
23 | 110100010110100010111011 1101001111111011100011001000001111001111
24 | 1101000101101000101110110 111101110010100110111111001001110010010
25 | 11010001011010001011101100 10000001111101101100010011011100000001
26 | 110100010110100010111011000 0101001100111010011011010111011011000
27 | 1101000101101000101110110001 011101101100101111111110100110000000
28 | 11010001011010001011101100011 00000011011100010010011100001001001
29 | 110100010110100010111011000111 1001011000110111011010010000100011
30 | 1101000101101000101110110001110 011111001101100000001110000110110
31 | 11010001011010001011101100011101 00010101010011010011101000110011
32 | 110100010110100010111011000111011 1011101001111111010010100110011
33 | 1101000101101000101110110001110110 000111000010010001110010110011
34 | 11010001011010001011101100011101101 10100100111011011101001110011
35 | 110100010110100010111011000111011010 0011100100000001010100001011
36 | 1101000101101000101110110001110110101 111010101010011110010101011
37 | 11010001011010001011101100011101101010 10101101111010011001111011
38 | 110100010110100010111011000111011010100 0010011100001110100001111
39 | 1101000101101000101110110001110110101001 110111101011101010101000
40 | 11010001011010001011101100011101101010010 11100011110010101111010
<-------------- stable bits ------------->\<--- unstable bits ...
(End)
MAPLE
for i from 0 to 19 do F[i]:=product(2*j+1, j=2^i..2^(i+1)-1) mod 2^21 od:
P:=1: for i from 0 to 19 do P:=(P*F[i]^(20-i)) mod 2^21 od:
with(ListTools): Reverse(convert(P, base, 2));
PROG
(PARI) lista(nn) = my(v=Vecrev(binary((2^nn)!/2^(2^nn-1) % 2^nn))); while (#v != nn, v = concat(v, 0)); v; \\ Michel Marcus, Jul 11 2023
CROSSREFS
Sequence in context: A181101 A321512 A297054 * A266459 A354199 A214509
KEYWORD
nonn,more
AUTHOR
Donald M Davis, Jul 05 2023
EXTENSIONS
a(22)-a(41) from Jon E. Schoenfield, Jul 12 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 9 00:14 EDT 2024. Contains 373227 sequences. (Running on oeis4.)