The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A357792 a(n) = coefficient of x^n in A(x) = Sum_{n>=0} C(x)^n * (1 - C(x)^n)^n, where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108). 2
1, 1, 1, 3, 7, 20, 60, 189, 613, 2039, 6918, 23850, 83315, 294282, 1049279, 3771685, 13653313, 49730599, 182130129, 670274170, 2477514172, 9193599339, 34237330355, 127914531260, 479318575375, 1800971051420, 6783809423496, 25611913597250, 96903193235645, 367363376407250 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Related identity: 0 = Sum_{n=-oo..+oo} x^n * (1 - x^n)^n, which holds as a formal power series in x.
Related identity: 0 = Sum_{n=-oo..+oo} x^n * (1 - C(x)^n)^n / (1 - C(x))^n, where C(x) = x + C(x)^2.
LINKS
FORMULA
Given C(x) = x + C(x)^2, g.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by:
(1) A(x) = Sum_{n>=0} C(x)^n * (1 - C(x)^n)^n.
(2) A(x) = Sum_{n>=1} (-1)^(n-1) * C(x)^(n*(n-1)) / (1 - C(x)^n)^n.
(3) A(x) = Sum_{n>=0} x^n * [ (1 - C(x)^n) / (1 - C(x)) ]^n.
(4) A(x) = Sum_{n>=1} -(-1/x)^n * C(x)^(n^2) / [ (1 - C(x)^n) / (1 - C(x)) ]^n.
a(n) ~ c * 2^(2*n) / n^(3/2), where c = 0.1930490961334149255878338532701052858837... - Vaclav Kotesovec, Mar 14 2023
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 7*x^4 + 20*x^5 + 60*x^6 + 189*x^7 + 613*x^8 + 2039*x^9 + 6918*x^10 + 23850*x^11 + 83315*x^12 + ...
Let C = C(x) = x + C(x)^2, then
A(x) = 1 + C*(1 - C) + C^2*(1 - C^2)^2 + C^3*(1 - C^3)^3 + C^4*(1 - C(x)^4)^4 + C^5*(1 - C(x)^5)^5 + ... + C(x)^n * (1 - C(x)^n)^n + ...
also,
A(x) = 1 + x*(1) + x^2*(1 + C)^2 + x^3*(1 + C + C^2)^3 + x^4*(1 + C + C^2 + C^3)^4 + x^5*(1 + C + C^2 + C^3 + C^4)^5 + x^6*(1 + C + C^2 + C^3 + C^4 + C^5)^6 + ... + x^n*(1 + C + C^2 + C^3 + ... + C^(n-1))^n + ...
further,
A(x) = 1/(1 - C) - C^2/(1 - C^2)^2 + C^6/(1 - C^3)^3 - C^12/(1 - C^4)^4 + C^20/(1 - C^5)^5 + ... + (-1)^(n-1) * C(x)^(n*(n-1)) / (1 - C^n)^n + ...
where the related Catalan series, C(x) = (1 - sqrt(1 - 4*x))/2, begins:
C(x) = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + 132*x^7 + 429*x^8 + 1430*x^9 + 4862*x^10 + 16796*x^11 + 58786*x^12 + ... + A000108(n)*x^(n+1) + ...
SPECIFIC VALUES.
The radius of convergence of the power series A(x) equals 1/4.
The power series A(x) converges at x = 1/4 to
A(1/4) = 1.578564238051657388445969550353857020762848420638921268996...
which equals the following sums:
(1) A(1/4) = Sum_{n>=0} (2^n - 1)^n / 2^(n*(n+1)),
(2) A(1/4) = Sum_{n>=1} (-1)^(n-1) * 2^n / (2^n - 1)^n.
PROG
(PARI) {a(n) = my(A=1, C = serreverse(x-x^2 + O(x^(n+2))));
A = sum(m=0, n, C^m * (1 - C^m)^m); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=1, C = serreverse(x-x^2 + O(x^(n+2))));
A = sum(m=0, n, x^m * (1 - C^m)^m/(1 - C)^m); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=1, C = serreverse(x-x^2 + O(x^(n+2))));
A = sum(m=1, n+1, (-1)^(m-1) * C^(m*(m-1)) / (1 - C^m)^m); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A132364 A110490 A132868 * A361625 A056783 A320735
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 14 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 19:21 EDT 2024. Contains 373134 sequences. (Running on oeis4.)