The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A354265 Array read by ascending antidiagonals for n >= 0 and k >= 0. Generalized Lucas numbers, L(n, k) = (psi^(k - 1)*(phi + n) - phi^(k - 1)*(psi + n)), where phi = (1 + sqrt(5))/2 and psi = (1 - sqrt(5))/2. 3

%I #11 Nov 22 2022 09:40:39

%S 2,3,1,4,4,3,5,7,7,4,6,10,11,11,7,7,13,15,18,18,11,8,16,19,25,29,29,

%T 18,9,19,23,32,40,47,47,29,10,22,27,39,51,65,76,76,47,11,25,31,46,62,

%U 83,105,123,123,76,12,28,35,53,73,101,134,170,199,199,123

%N Array read by ascending antidiagonals for n >= 0 and k >= 0. Generalized Lucas numbers, L(n, k) = (psi^(k - 1)*(phi + n) - phi^(k - 1)*(psi + n)), where phi = (1 + sqrt(5))/2 and psi = (1 - sqrt(5))/2.

%C The definition declares the Lucas numbers for all integers n and k. It gives the classical Lucas numbers as L(0, n) = Lucas(n), where Lucas(n) = A000032(n) is extended in the usual way for negative n.

%H Peter Luschny, <a href="https://www.luschny.de/math/seq/oeis/FibonacciFunction.html">The Fibonacci Function</a>.

%F Functional equation extends Cassini's theorem:

%F L(n, k) = (-1)^k*L(1 - n, -k - 2).

%F L(n, k) = n*Lucas(k + 1) + Lucas(k).

%F L(n, k) = L(n, k-1) + L(n, k-2).

%F L(n, k) = i^k*sec(c)*(n*cos(c*(k + 1)) - i*cos(c*k)), where c = Pi/2 + i*arccsch(2), for all n, k in Z.

%F Using the generalized Fibonacci numbers F(n, k) = A352744(n, k),

%F L(n, k) = F(n, k+1) + F(n, k) + F(n, k-1) + F(n, k-2).

%e Array starts:

%e [0] 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... A000032

%e [1] 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, ... A000032 (shifted)

%e [2] 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, ... A000032 (shifted)

%e [3] 5, 10, 15, 25, 40, 65, 105, 170, 275, 445, ... A022088

%e [4] 6, 13, 19, 32, 51, 83, 134, 217, 351, 568, ... A022388

%e [5] 7, 16, 23, 39, 62, 101, 163, 264, 427, 691, ... A190995

%e [6] 8, 19, 27, 46, 73, 119, 192, 311, 503, 814, ... A206420

%e [7] 9, 22, 31, 53, 84, 137, 221, 358, 579, 937, ... A206609

%e [8] 10, 25, 35, 60, 95, 155, 250, 405, 655, 1060, ...

%e [9] 11, 28, 39, 67, 106, 173, 279, 452, 731, 1183, ...

%p phi := (1 + sqrt(5))/2: psi := (1 - sqrt(5))/2:

%p L := (n, k) -> phi^(k+1)*(n - psi) + psi^(k+1)*(n - phi):

%p seq(seq(simplify(L(n-k, k)), k = 0..n), n = 0..10);

%t L[n_, k_] := With[{c = Pi/2 + I*ArcCsch[2]},

%t I^k Sec[c] (n Cos[c (k + 1)] - I Cos[c k]) ];

%t Table[Simplify[L[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm

%t (* Alternative: *)

%t L[n_, k_] := n*LucasL[k + 1] + LucasL[k];

%t Table[Simplify[L[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm

%o (Julia)

%o const FibMem = Dict{Int,Tuple{BigInt,BigInt}}()

%o function FibRec(n::Int)

%o get!(FibMem, n) do

%o n == 0 && return (BigInt(0), BigInt(1))

%o a, b = FibRec(div(n, 2))

%o c = a * (b * 2 - a)

%o d = a * a + b * b

%o iseven(n) ? (c, d) : (d, c + d)

%o end

%o end

%o function Lucas(n, k)

%o k == 0 && return BigInt(n + 2)

%o k == -1 && return BigInt(2 * n - 1)

%o k < 0 && return (-1)^k * Lucas(1 - n, -k - 2)

%o a, b = FibRec(k)

%o c, d = FibRec(k - 1)

%o n * (2 * a + b) + 2 * c + d

%o end

%o for n in -6:6

%o println([Lucas(n, k) for k in -6:6])

%o end

%Y Cf. A000032, A000204, A022088, A022388, A190995, A206420, A206609.

%Y Cf. A352744.

%K nonn,tabl

%O 0,1

%A _Peter Luschny_, May 29 2022

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 22:26 EDT 2024. Contains 373110 sequences. (Running on oeis4.)