The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A354257 a(n) is the smallest k such that there exists a degree-k primitive Dirichlet characters modulo n, or -1 no such k exists. 5
1, -1, 2, 2, 2, -1, 2, 2, 3, -1, 2, 2, 2, -1, 2, 4, 2, -1, 2, 2, 2, -1, 2, 2, 5, -1, 9, 2, 2, -1, 2, 8, 2, -1, 2, 6, 2, -1, 2, 2, 2, -1, 2, 2, 6, -1, 2, 4, 7, -1, 2, 2, 2, -1, 2, 2, 2, -1, 2, 2, 2, -1, 3, 16, 2, -1, 2, 2, 2, -1, 2, 6, 2, -1, 10, 2, 2, -1, 2, 4, 27, -1, 2, 2, 2, -1, 2, 2, 2, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
For n !== 2 (mod 4), a(n) is the smallest k such that A354058(n,k) != 0 (or the smallest k such that A354061(n,k) != 0).
For n !== 2 (mod 4), a(n) is the smallest k such that Sum_{d|n} mu(n/d)*#{x in (Z/dZ)*: x^k == 1 (mod d)} != 0, where mu = A008683, (Z/dZ)* is the multiplicative group of integers modulo d.
LINKS
FORMULA
Write n = 2^(e_0) * (p_1) * ... * (p_r) * (q_1)^(e_1) * ... * (q_s)^(e_s), where (p_i)'s and (q_j)'s are distinct odd primes, e_j >= 2. Let M = Product_{j=1..s} (q_j)^(e_j-1):
(i) if e_0 = 1, then a(n) = -1;
(ii) if e_0 = 2, then a(n) = 2*M;
(iii) if e_0 >= 3, then a(n) = 2^(e_0-2)*M;
(iv) if e_0 = 0, then a(n) = M if for every 1 <= i <= r, there exists 1 <= j <= s such that q_j divides p_i - 1; otherwise a(n) = 2*M.
Let k >= 1. Write k = 2^(e_0) * (q_1)^(e_1) * ... * (q_s)^(e_s), e_j >= 1. Let N = Product_{j=1..s} (q_j)^(e_j+1):
(i) if e_0 = 0, then a(n) = k <=> n = (p_1) * ... * (p_r) * N, where: p_i != q_j, and for every 1 <= i <= r, there exists 1 <= j <= s such that q_j divides p_i - 1.
(ii) if e_0 = 1, then a(n) = k <=> (a) n = (p_1) * ... * (p_r) * N, where: p_i != q_j, and there exists 1 <= i <= r such that none of (q_j)'s divides p_i - 1; or (b) n = (4 or 8) * N * (an odd squarefree number coprime to N);
(iii) if e_0 >= 2, then a(n) = k <=> n = 2^(e_0+2) * N * (an odd squarefree number coprime to N).
EXAMPLE
a(45) = 6: there does not exist a linear, quadratic, cubic, quartic or quintic primitive Dirichlet characters modulo 45, but there are 4 sextic primitive Dirichlet characters.
a(63) = 3: there does not exist a linear or quadratic primitive Dirichlet characters modulo 63, but there are 4 cubic primitive Dirichlet characters.
PROG
(PARI) a(n) = if(n%4==2, return(-1), my(e_0 = valuation(n, 2)); n=n>>e_0; my(L=factor(n), w=omega(n), v=[], M=1); for(j=1, w, if(L[j, 2]==1, v=concat(v, j), M*=L[j, 1]^(L[j, 2]-1))); if(e_0 >= 2, return(2^max(e_0-2, 1)*M), for(i=1, #v, if(gcd(M, L[v[i], 1]-1)==1, return(2*M))); return(M)))
CROSSREFS
A354258 gives the earliest occurrence of each positive integers.
Indices of 2: A003657 U A003658 \ {1}.
Sequence in context: A182134 A189684 A308176 * A106493 A309981 A083338
KEYWORD
sign
AUTHOR
Jianing Song, May 21 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 22:44 EDT 2024. Contains 372703 sequences. (Running on oeis4.)