The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A352657 The number of lozenge tilings of a semiregular hexagon of side lengths n, n, 3*n, n, n and 3*n; equivalently, the number of plane partitions whose solid Young diagram fits inside an n X n X 3*n box. 2
1, 4, 336, 572572, 19571505408, 13365232267026024, 182001937855822420050000, 49372092168218024268166702560000, 266640931683989945767062736068603511111680, 28657545169614835585678719963104037818950931553412096, 61277278161726929232430881966673334396569563602790616552072890176 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
A lozenge is a unit rhombus with internal angles of 60 and 120 degrees. A hexagon is semiregular if its internal angles are 120 degrees and opposite sides are of equal length. Let S(n) = Product_{k = 0..n-1} k! = A000178(n-1) for n >= 1. S(n) equals the superfactorial of n-1. Then for a, b and c nonnegative integers a semiregular hexagon with side-lengths a, b, c, a, b, c can be tiled by lozenges in exactly S(a+b+c)*S(a)*S(b)*S(c)/(S(a+b)*S(a+c)*S(b+c)) ways.
The superfactorial ratio (S(a)*S(b)*S(c)*S(a+b+c))/(S(a+b)*S(a+c)*S(b+c)) is an integer (see MacMahon, Chapter II, Section 429, p. 182, with x -> 1) and can be viewed as the superfactorial analog of the binomial coefficient (a + b)!/(a!*b!). Setting a = b = n, c = 3*n gives the entries for the present sequence, a superfactorial analog of A005810(n) = binomial(4*n,n).
LINKS
C. Krattenthaler, Advanced Determinant Calculus: A Complement, Linear Algebra Appl. 411 (2005), 68-166; arXiv:math/0503507v2 [math.CO], 2005.
P. A. MacMahon, Combinatory Analysis, vol. 2, Cambridge University Press, 1916; reprinted by Chelsea, New York, 1960.
Eric Weisstein's World of Mathematics, Plane Partition
Wikipedia, Superfactorial
FORMULA
a(n) = S(n)^2*S(3*n)*S(5*n)/(S(2*n)*S(4*n)^2), where S(n) = Product_{k = 0..n-1} k! with S(0) = 1.
a(n) = Product_{i = 1..3*n} (2*n+i-1)!*(i-1)!/(n+i-1)!^2.
a(n) = Product_{i = 1..n} (4*n+i-1)!*(i-1)!/((3*n+i-1)!*(n+i-1)!).
a(n) = Product_{i = 1..3*n} Product_{1 <= j, k <= n) (i + j + k - 1)/(i + j + k - 2).
a(n) = Product_{i = 1..n} Product_{j = 1..n} (3*n + i + j - 1)/(i + j - 1).
a(n) = Product_{i = 1..3*n} Product_{j = 1..n} (n + i + j - 1)/(i + j - 1).
For n >= 1, a(n) = det( (binomial(4*n,n+i-j)) ) for 1 <= i, j <= n. Apply Krattenhaller, Theorem 4 with a = n, b = 3*n and c = n.
a(n) ~ 1/A*(32/(15*n))^(1/12)*exp(B*n^2 + 1/12), where A = 1.2824271291... is the Glaisher-Kinkelin constant A074962 and B = (25/2)*log(5) + (9/2)*log(3) - 34*log(2).
Conjecture 1): the Gauss congruences a(n*p^r) == a(n*p^(r-1)) (mod p^r) hold for all primes p and positive integers n and r. If true, then the expansion of exp(Sum_{n >= 1} a(n)*x^n/n has integer coefficients.
Conjecture 2): the supercongruences a(n*p^r) == a(n*p^(r-1))^p (mod p^(4*r)) hold for all primes p and positive integers n and r.
a(n) ~ exp(1/12) * 3^(9*n^2/2 - 1/12) * 5^(25*n^2/2 - 1/12) / (A * n^(1/12) * 2^(34*n^2 - 5/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 16 2022
From Peter Bala, Feb 15 2023: (Start)
a(n) = Product_{i = 1..n} Product_{j = 3*n..4*n-1} (i+j) / Product_{j = 0..n-1} (i+j).
a(n) = Product_{i = 1..3*n} Product_{j = n..2*n-1} (i+j) / Product_{j = 0..n-1} (i+j). (End)
EXAMPLE
Examples of supercongruences:
p = 5, n = 1, r = 1:
a(5) - a(1)^5 = 13365232267026024 - 4^5 = (2^3)*(5^5)*534609290681 == 0 (mod 5^5).
p = 7, n = 1, r = 1:
a(7) - a(1)^7 = 49372092168218024268166702560000 - 4^7 = (2^8)*(7^4)*42153329 *1905537621534581059 == 0 (mod 7^4).
p = 3, n = 1, r = 2:
a(3^2) - a(3)^3 = 28657545169614835585678719963104037818950931553412096 - 572572^3 = (2^6)*(3^9)*7*13*36206433373771931*6904632711001213215426713099 == 0 (mod 3^9).
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + 4*x + 176 x^2 + 191540*x^3 + 4893655248*x^4 + 2673066058559752*x^5 + 30333667002369040991520*x^6 + 7053156145366242954671905412736*x^7 + 33330116488711372656254906993570075436704*x^8 + 3184171685646079976603214029980784880572652377971904*x^9 + 6127727816185429609991005336553574169498938182021433716145181760*x^10 + ....
MAPLE
S := proc(n) local i; mul(i!, i = 0..n-1) end proc:
a := n -> S(n)^2*S(3*n)*S(5*n)/(S(2*n)*S(4*n)^2):
seq(a(n), n = 0..10);
MATHEMATICA
Table[BarnesG[n + 1]^2 * BarnesG[3*n + 1] * BarnesG[5*n + 1] / (BarnesG[2*n + 1] * BarnesG[4*n + 1]^2), {n, 0, 10}] (* Vaclav Kotesovec, May 16 2022 *)
CROSSREFS
Sequence in context: A086895 A293241 A220646 * A173367 A214161 A265868
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Apr 22 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 04:19 EDT 2024. Contains 372720 sequences. (Running on oeis4.)