The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A352448 Expansion of e.g.f. LambertW( -2*x/(1-x) ) / (-2*x). 8
1, 3, 22, 278, 5128, 125592, 3850000, 142013328, 6129705088, 303238991744, 16920975718144, 1051612647426816, 72045481821580288, 5394849460316820480, 438392509692455286784, 38424395486908104071168, 3613476161122656804438016 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
An interesting property of this e.g.f. A(x) is that the sum of coefficients of x^k, k=0..n, in 1/A(x)^n equals zero, for n > 1.
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies:
(1) A(x) = LambertW( -2*x/(1-x) ) / (-2*x).
(2) A(x) = exp( 2*x*A(x) ) / (1-x).
(3) A(x) = log( (1-x) * A(x) ) / (2*x).
(4) A( x/(exp(2*x) + x) ) = exp(2*x) + x.
(5) A(x) = (1/x) * Series_Reversion( x/(exp(2*x) + x) ).
(6) Sum_{k=0..n} [x^k] 1/A(x)^n = 0, for n > 1.
(7) [x^(n+1)/(n+1)!] 1/A(x)^n = -2^(n+1) * n for n >= (-1).
a(n) ~ (1 + 2*exp(1))^(n + 3/2) * n^(n-1) / (2^(3/2) * exp(n + 1/2)). - Vaclav Kotesovec, Mar 18 2022
a(n) = n! * Sum_{k=0..n} 2^k * (k+1)^(k-1) * binomial(n,k)/k!. - Seiichi Manyama, Mar 03 2023
EXAMPLE
E.g.f.: A(x) = 1 + 3*x + 22*x^2/2! + 278*x^3/3! + 5128*x^4/4! + 125592*x^5/5! + 3850000*x^6/6! + 142013328*x^7/7! + ...
such that A(x) = exp( 2*x*A(x) ) / (1-x), where
exp( 2*x*A(x) ) = 1 + 2*x + 16*x^2/2! + 212*x^3/3! + 4016*x^4/4! + 99952*x^5/5! + 3096448*x^6/6! + 115063328*x^7/7! + ...
Related table.
Another interesting property of the e.g.f. A(x) is illustrated here.
The table of coefficients of x^k/k! in 1/A(x)^n begins:
n=1: [1, -3, -4, -44, -736, -16832, -491168, ...];
n=2: [1, -6, 10, -16, -320, -8064, -249344, ...];
n=3: [1, -9, 42, -78, -48, -1776, -66528, ...];
n=4: [1, -12, 92, -392, 728, -128, -8960, ...];
n=5: [1, -15, 160, -1120, 4600, -8520, -320, ...];
n=6: [1, -18, 246, -2424, 16104, -64752, 119952, ...];
...
from which we can illustrate that the partial sum of coefficients of x^k, k=0..n, in 1/A(x)^n equals zero, for n > 1, as follows:
n=1:-2 = 1 + -3;
n=2: 0 = 1 + -6 + 10/2!;
n=3: 0 = 1 + -9 + 42/2! + -78/3!;
n=4: 0 = 1 + -12 + 92/2! + -392/3! + 728/4!;
n=5: 0 = 1 + -15 + 160/2! + -1120/3! + 4600/4! + -8520/5!;
n=6: 0 = 1 + -18 + 246/2! + -2424/3! + 16104/4! + -64752/5! + 119952/6!;
...
PROG
(PARI) {a(n) = n!*polcoeff( (1/x)*serreverse( x/(exp(2*x +x^2*O(x^n)) + x) ), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) my(x='x+O('x^30)); Vec(serlaplace(lambertw(-2*x/(1-x))/(-2*x))) \\ Michel Marcus, Mar 17 2022
(PARI) a(n) = n!*sum(k=0, n, 2^k*(k+1)^(k-1)*binomial(n, k)/k!); \\ Seiichi Manyama, Mar 03 2023
CROSSREFS
Cf. A361068.
Sequence in context: A319147 A074706 A293989 * A141360 A162659 A360596
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 16 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 10:02 EDT 2024. Contains 373105 sequences. (Running on oeis4.)