The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A341867 Square array read by downward antidiagonals: T(m,n) = Sum_{i=0..m, j=0..n} binomial(m,i)*binomial(n,j)*binomial(i+j,i). 2
1, 2, 2, 4, 5, 4, 8, 12, 12, 8, 16, 28, 33, 28, 16, 32, 64, 86, 86, 64, 32, 64, 144, 216, 245, 216, 144, 64, 128, 320, 528, 664, 664, 528, 320, 128, 256, 704, 1264, 1736, 1921, 1736, 1264, 704, 256, 512, 1536, 2976, 4416, 5322, 5322, 4416, 2976, 1536, 512 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
T(m,n) is the coefficient of x^m*y^n of 1/(1 - 2*x - 2*y + 3*x*y).
In general, define T_{s,t}(m,n) = Sum_{i=0..m, j=0..n} binomial(m,i)*binomial(n,j)*binomial(i+j,i)*s^i*t^j, then T_{s,t}(m,n) is the coefficient of x^m*y^n of 1/(1 - (1+s)*x - (1+t)*y + (1+s+t)*x*y).
T(m,n) is the coefficient of x^n of (2 - 3*x)^m/(1 - 2*x)^(m+1). In general, T_{s,t}(m,n) is the coefficient of x^n of ((1+t) - (1+s+t)*x)^m/(1 - (1+s)*x)^(m+1).
T(m,n) is odd if and only if m = n. Proof: T(m,n) == T_{-1,-1}(m,n) (mod 2). The RHS is the coefficient of x^m*y^n of 1/(1 - x*y), which is 1 if m = n and 0 otherwise.
LINKS
Jianing Song, Table of n, a(n) for n = 0..5150 (diagonals 0..100)
FORMULA
T(0,n) = Sum_{k=0..n} binomial(n,k) = 2^n;
T(1,n) = Sum_{k=0..n} binomial(n,k) * (k+2) = (n+4)*2^(n-1);
T(2,n) = Sum_{k=0..n} binomial(n,k) * (k^2+7*k+8)/2 = (n^2+15*n+32)*2^(n-3);
T(3,n) = Sum_{k=0..n} binomial(n,k) * (k^3+15*k^2+56*k+48)/6 = (n^3+33*n^2+254*n+384)*2^(n-4)/3.
E.g.f.: Sum_{m,n>=0} T(m,n)*x^m*y^n/(m!*n!) = exp(2*x+2*y) * BesselI(0,2*sqrt(x*y)). In general, Sum_{m,n>=0} T_{s,t}(m,n)*x^m*y^n/(m!*n!) = exp((1+s)*x+(1+t)*y) * BesselI(0,2*sqrt(s*t*x*y)). Note that BesselI(0,2*sqrt(x)) = Sum_{k>=0} x^k/(k!)^2.
E.g.f. for m-th row: Sum_{n>=0} T(m,n)*x^n/n! = exp(2*x) * Sum_{k=0..m} (binomial(m,k)*2^(m-k)/k!) * x^k. In general, Sum_{n>=0} T_{s,t}(m,n)*x^n/n! = exp((1+s)*x) * Sum_{k=0..m} (binomial(m,k)*(1+t)^(m-k)/k!) * (s*t*x)^k.
Define P_n(x) = exp(-x) * d^n/dx^n (x^n*exp(x)), then Sum_{n>=0} T_{s,t}(m,n)*x^n/n! = exp((1+s)*x) * ((1+t)^m/m!) * P_m(s*t*x/(1+t)) if t != -1 and Sum_{n>=0} T_{s,t}(m,n)*x^n/n! = exp((1+s)*x) * (s*t*x)^m/m! if t = -1.
T(m, n) = Sum_{j=0..n} binomial(n, j)*hypergeom([j + 1, -m], [1], -1). - Peter Luschny, Nov 08 2021
EXAMPLE
Rows 0-7:
1, 2, 4, 8, 16, 32, 64, 128, ...
2, 5, 12, 28, 64, 144, 320, 704, ...
4, 12, 33, 86, 216, 528, 1264, 2976, ...
8, 28, 86, 245, 664, 1736, 4416, 10992, ...
16, 64, 216, 664, 1921, 5322, 14268, 37272, ...
32, 144, 528, 1736, 5322, 15525, 43620, 118980, ...
64, 320, 1264, 4416, 14268, 43620, 127905, 362910, ...
128, 704, 2976, 10992, 37272, 118980, 362910, 1067925, ...
...
MATHEMATICA
T[m_, n_] := Sum[Binomial[m, i] * Binomial[n, j] * Binomial[i + j, i], {i, 0, m}, {j, 0, n} ]; Table[T[m, n - m], {n, 0, 9}, {m, 0, n}] // Flatten (* Amiram Eldar, Nov 08 2021 *)
T[m_, n_] := Sum[Binomial[n, j] Hypergeometric2F1[j + 1, -m, 1, -1], {j, 0, n}];
(* Peter Luschny, Nov 08 2021 *)
PROG
(PARI) T(m, n) = sum(i=0, m, sum(j=0, n, binomial(m, i)*binomial(n, j)*binomial(i+j, i)))
CROSSREFS
Cf. A000079 (0th row), A045623(n+1) (1st row), A343561 (2nd row), A084771 (main diagonal).
Sequence in context: A072454 A115216 A208637 * A252938 A229402 A266249
KEYWORD
nonn,tabl
AUTHOR
Jianing Song, Nov 07 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 2 20:31 EDT 2024. Contains 373045 sequences. (Running on oeis4.)