The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A338143 Triangle read by rows: T(n,k) is the number of unoriented colorings of the edges of a regular n-D orthotope (or ridges of a regular n-D orthoplex) using exactly k colors. Row n has n*2^(n-1) columns. 4
1, 1, 4, 6, 3, 1, 142, 11682, 310536, 3460725, 19870590, 65886660, 133585200, 168399000, 128898000, 54885600, 9979200, 1, 11251320, 4825713121719, 48019143606137456, 60392840368910627325 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Each chiral pair is counted as one when enumerating unoriented arrangements. A ridge is an (n-2)-face of an n-D polytope. For n=1, the figure is a line segment with one edge. For n=2, the figure is a square with 4 edges (vertices). For n=3, the figure is a cube (octahedron) with 12 edges. The number of edges (ridges) is n*2^(n-1). The Schläfli symbols for the n-D orthotope (hypercube) and the n-D orthoplex (hyperoctahedron, cross polytope) are {4,...,3,3} and {3,3,...,4} respectively, with n-2 3's in each case. The figures are mutually dual.
The algorithm used in the Mathematica program below assigns each permutation of the axes to a partition of n and then considers separate conjugacy classes for axis reversals. It uses the formulas in Balasubramanian's paper. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
LINKS
FORMULA
A337408(n,k) = Sum_{j=1..n*2^(n-1)} T(n,j) * binomial(k,j).
T(n,k) = A338142(n,k) - A338144(n,k) = (A338142(n,k) + A338145(n,k)) / 2 = A338144(n,k) + A338145(n,k).
T(2,k) = A338147(2,k) = A325017(2,k) = A325009(2,k); T(3,k) = A338147(3,k).
EXAMPLE
Triangle begins with T(1,1):
1
1 4 6 3
1 142 11682 310536 3460725 19870590 65886660 133585200 168399000
...
MATHEMATICA
m=1; (* dimension of color element, here an edge *)
Fi1[p1_] := Module[{g, h}, Coefficient[Product[g = GCD[k1, p1]; h = GCD[2 k1, p1]; (1 + 2 x^(k1/g))^(r1[[k1]] g) If[Divisible[k1, h], 1, (1+2x^(2 k1/h))^(r2[[k1]] h/2)], {k1, Flatten[Position[cs, n1_ /; n1 > 0]]}], x, n - m]];
FiSum[] := (Do[Fi2[k2] = Fi1[k2], {k2, Divisors[per]}]; DivisorSum[per, DivisorSum[d1 = #, MoebiusMu[d1/#] Fi2[#] &]/# &]);
CCPol[r_List] := (r1 = r; r2 = cs - r1; per = LCM @@ Table[If[cs[[j2]] == r1[[j2]], If[0 == cs[[j2]], 1, j2], 2j2], {j2, n}]; Times @@ Binomial[cs, r1] 2^(n-Total[cs]) b^FiSum[]);
PartPol[p_List] := (cs = Count[p, #]&/@ Range[n]; Total[CCPol[#]&/@ Tuples[Range[0, cs]]]);
pc[p_List] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #]&/@ mb; n!/(Times@@(ci!) Times@@(mb^ci))] (*partition count*)
row[n_Integer] := row[n] = Factor[(Total[(PartPol[#] pc[#])&/@ IntegerPartitions[n]])/(n! 2^n)]
array[n_, k_] := row[n] /. b -> k
Table[LinearSolve[Table[Binomial[i, j], {i, 2^(n-m)Binomial[n, m]}, {j, 2^(n-m)Binomial[n, m]}], Table[array[n, k], {k, 2^(n-m)Binomial[n, m]}]], {n, m, m+4}] // Flatten
CROSSREFS
Cf. A338142 (oriented), A338144 (chiral), A338145 (achiral), A337408 (k or fewer colors), A325017 (orthotope vertices, orthoplex facets).
Cf. A327088 (simplex), A338147 (orthoplex edges, orthotope ridges).
Sequence in context: A325009 A325017 A338147 * A016492 A213080 A200365
KEYWORD
nonn,tabf
AUTHOR
Robert A. Russell, Oct 12 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 10:45 EDT 2024. Contains 372788 sequences. (Running on oeis4.)