The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337607 Decimal expansion of Shanks's constant: the Hardy-Littlewood constant for A000068. 2
6, 6, 9, 7, 4, 0, 9, 6, 9, 9, 3, 7, 0, 7, 1, 2, 2, 0, 5, 3, 8, 9, 2, 2, 4, 3, 1, 5, 7, 1, 7, 6, 4, 4, 0, 6, 6, 8, 8, 3, 7, 0, 1, 5, 7, 4, 3, 6, 4, 8, 2, 4, 1, 8, 5, 7, 3, 2, 9, 8, 5, 2, 2, 8, 4, 5, 2, 4, 6, 7, 9, 9, 9, 5, 6, 4, 5, 7, 1, 4, 7, 2, 7, 3, 1, 5, 0, 6, 2, 1, 0, 2, 1, 4, 3, 5, 9, 3, 7, 3, 5, 0, 2, 7, 3, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Named by Finch (2003) after the American mathematician Daniel Shanks (1917 - 1996).
Shanks (1961) conjectured that the number of primes of the form m^4 + 1 (A037896) with m <= x is asymptotic to c * li(x), where li(x) is the logarithmic integral function and c is this constant. He defined c as in the formula section and evaluated it by 0.66974.
The first 100 digits of this constant were calculated by Ettahri et al. (2019).
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 90.
LINKS
Keith Conrad, Hardy-Littlewood constants in: Mathematical properties of sequences and other combinatorial structures, Jong-Seon No et al. (eds.), Kluwer, Boston/Dordrecht/London, 2003, pp. 133-154, alternative link.
Salma Ettahri, Olivier Ramaré, Léon Surel, Fast multi-precision computation of some Euler products, arXiv:1908.06808 [math.NT], 2019 (Corollary 1.8).
Mohan Lal, Primes of the form n^4 + 1, Mathematics of Computation, Vol. 21, No. 98 (1967), pp. 245-247.
Daniel Shanks, On Numbers of the form n^4 + 1, Mathematics of Computation, Vol. 15, No. 74 (1961), pp. 186-189.
Daniel Shanks, Lal's constant and generalizations, Mathematics of Computation, Vol. 21, No. 100 (1967), pp. 705-707.
Eric Weisstein's World of Mathematics, Lal's Constant.
FORMULA
Equals (Pi^2/(16*log(1+sqrt(2)))) * Product_{primes p == 1 (mod 8)} (1 - 4/p)*((p + 1)/(p - 1))^2 = (Pi/8) * A088367 * A334826.
EXAMPLE
0.669740969937071220538922431571764406688370157436482...
MATHEMATICA
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
$MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Pi^2/(16*Log[1+Sqrt[2]]) * Zs[8, 1, 4]/Z[8, 1, 2]^2, digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
CROSSREFS
Similar constants: A005597, A331941, A337606, A337608.
Sequence in context: A198116 A200023 A339705 * A198115 A291545 A205372
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Sep 04 2020
EXTENSIONS
More digits from Vaclav Kotesovec, Jan 15 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 18:29 EDT 2024. Contains 372840 sequences. (Running on oeis4.)