The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A336982 a(n) = (Sum_{k=0..n-1}(540*k + 137)*3136^(n-1-k)*C(2*k, k)*T_k(2, 81)*T_k(14, 81))/ (2*n*C(2*n, n)), where T_k(b, c) denotes the coefficient of x^k in the expansion of (x^2 + b*x + c)^k. 4
19481, 15834677, 11228057204, 8565432196217, 6307725016636484, 4757142559658418068, 3551514651027481311824, 2677076362952455673170913, 2013177974581354357341976964, 1521087748999864267161031319444, 1149516234275305699460970109062608 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
Conjecture 1: a(n) is an integer for each n > 1. Moreover, a(n) is odd if and only if n = 2^k + 1 for some nonnegative integer k.
Conjecture 2: Denote (540*k+137)/3136^k*C(2k,k)*T_k(2,81)*T_k(14,81) by t(k).
(i) We have Sum_{k>=0}t(k) = 98*(10+7*Sqrt(5))/(3*Pi).
(ii) For any odd prime p different from 7, we have
Sum_{k=0..p-1}t(k) == p/3*(270*(-1/p) - 104*(-2/p) + 245*(-5/p)) (mod p^2), where (a/p) denotes the Legendre symbol.
(iii) For any prime p == 1,-1,9,-9 (mod 40) and positive integer n, the number (T(p*n)-p*(-1/p)*T(n))/((p*n)^2*C(2k,k)) is a p-adic integer, where T(m) denotes the Sum_{k=0..m-1}t(k).
Conjecture 3. Let p > 7 be a prime, and let S(p) denote the sum Sum_{k=0..p-1}C(2k,k)*T_k(2,81)*T_k(14,81).
(1) If (-30/p) = -1, then S(p) == 0 (mod p^2).
(2) If (2/p) = (p/3) = (p/5) = 1 and p = x^2 + 30*y^2 with x and y integers, then S(p) == (-1/p)*(4x^2-2p) (mod p^2).
(3) If (p/3) = 1, (2/p) = (p/5) = -1, and p = 3*x^2 + 10*y^2 with x and y integers, then S(p) == (-1/p)*(2p-12x^2) (mod p^2).
(4) If (2/p) = 1, (p/3) = (p/5) = -1, and p = 2*x^2 + 15*y^2 with x and y integers, then S(p) == (-1/p)*(8x^2-2p) (mod p^2).
(5) If (p/5) = 1, (2/p) = (p/3) = -1, and p = 5*x^2 + 6*y^2 with x and y integers, then S(p) == (-1/p)*(20x^2-2p) (mod p^2).
See also A336981 for similar conjectures.
LINKS
Zhi-Wei Sun, New series for powers of Pi and related congruences, Electron. Res. Arch. 28(2020), no. 3, 1273-1342.
EXAMPLE
a(2) = 19481 since (Sum_{k=0,1}(540*k+137)*3136^(1-k)*C(2k,k)*T_k(2,81)*T_k(14,81))/(2*2*C(4,2)) = (137*3136 + (540 + 137)*C(2,1)*T_1(2,81)*T_1(14,81))/(4*6) = (137*3136 + 677*2*2*14)/24 = 19481.
MAPLE
T := (k, b, c) -> coeff((x^2 + b*x + c)^k, x, k);
a := n -> add((540*k + 137)*3136^(n-1-k)*binomial(2*k, k)*T(k, 2, 81)*T(k, 14, 81), k = 0..n-1) / (2*n*binomial(2*n, n)):
seq(a(n), n=1..14); # Peter Luschny, Aug 10 2020
MATHEMATICA
T[b_, c_, 0]=1; T[b_, c_, 1]=b;
T[b_, c_, n_]:=T[b, c, n]=(b(2n-1)T[b, c, n-1]-(b^2-4c)(n-1)T[b, c, n-2])/n;
a[n_]:=a[n]=Sum[(540k+137)*3136^(n-1-k)*Binomial[2k, k]*T[2, 81, k]*T[14, 81, k], {k, 0, n-1}]/(2n*Binomial[2n, n]);
Table[a[n], {n, 2, 12}]
CROSSREFS
Sequence in context: A254486 A254493 A253858 * A345574 A345575 A345831
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 09 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 11 19:50 EDT 2024. Contains 373317 sequences. (Running on oeis4.)