All of the comments for A336013 also describe this table. Remember that $I=-\frac{z}{y}$ and $\theta=-\frac{y}{x}$. I and θ are both integers only for rows with $\mathrm{x}=+-1$.

There exist pairs of rows $\left[\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right]$ and $\left[\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right]$ for which $\mathrm{I}_{2}=\theta_{1}$ and $\theta_{2}=\mathrm{I}_{1}$ making $\frac{I_{1}}{\theta_{2}}+\frac{I_{2}}{\theta_{1}}=1+1=2$. They provide the simplest cases of summing two rows to get a triple for which $y^{2}-y-x z=0$. In these cases the sum of the two rows is always $[0,1,0]$ which is not in the table but corresponds to $0 a b+1(a+b)+0=a+b$.

Proof that when the I's and θ 's are switched between $f_{1}(a, b)$ and $f_{2}(a, b)$,

$$
\mathrm{f}_{1}(\mathrm{a}, \mathrm{~b})+\mathrm{f}_{2}(\mathrm{a}, \mathrm{~b})=\mathrm{a}+\mathrm{b}:
$$

Given $I_{2}=\theta_{1}$ and $\theta_{2}=I_{1}$,

$$
\begin{aligned}
\mathrm{f}_{1}(\mathrm{a}, \mathrm{~b}) & =\frac{\mathrm{ab}-\theta_{1}(\mathrm{a}+\mathrm{b})+\mathrm{I}_{1} \theta_{1}}{\mathrm{I}_{1}-\theta_{1}} \\
\mathrm{f}_{2}(\mathrm{a}, \mathrm{~b}) & =\frac{\mathrm{ab}-\theta_{2}(\mathrm{a}+\mathrm{b})+\mathrm{I}_{2} \theta_{2}}{\mathrm{I}_{2}-\theta_{2}} \\
& =\frac{\mathrm{ab}-\mathrm{I}_{1}(\mathrm{a}+\mathrm{b})+\theta_{1} \mathrm{I}_{1}}{\theta_{1}-\mathrm{I}_{1}} \\
& =\frac{-a b+\mathrm{I}_{1}(\mathrm{a}+\mathrm{b})-\mathrm{I}_{1} \theta_{1}}{\mathrm{I}_{1}-\theta_{1}} \\
\mathrm{f}_{1}(\mathrm{a}, \mathrm{~b}) & +\mathrm{f}_{2}(\mathrm{a}, \mathrm{~b})=\frac{\mathrm{ab}-\mathrm{ab}+\left(\mathrm{I}_{1}-\theta_{1}\right)(\mathrm{a}+\mathrm{b})+\mathrm{I}_{1} \theta_{1}-\mathrm{I}_{1} \theta_{1}}{\mathrm{I}_{1}-\theta_{1}}=a+b \text { QED. }
\end{aligned}
$$

With the introduction of negative x, y and z we have the possibility of summing three rows to a triple for which $y^{2}-y-x z=0$, and each pair of the three rows sums to a row. This was not possible in A336013. However when this happens, the result is not a row. This is because in these cases, the sum of three rows is always $[0,1,0]$.

Proof that if three rows pairwise sum to another row, then all three sum to $[0,1,0]$:
Lemma. If $[x, y, z]$ is a row, then $[0,1,0]-[x, y, z]$ is a row.
Proof of lemma. $[0,1,0]-[\mathrm{x}, \mathrm{y}, \mathrm{z}]=[-\mathrm{x}, 1-\mathrm{y},-\mathrm{z}]$.
Rename this triple $[\mathrm{X}, \mathrm{Y}, \mathrm{Z}]$ and show that $\mathrm{Y}^{2}-\mathrm{Y}-\mathrm{XZ}=0$.
$Y^{2}-Y-X Z=(1-y)^{2}-(1-y)-(-x)(-z)=1-2 y+y^{2}-1+y-x z$
$=y^{2}-y-x z=0$.
Corollary. If $[\mathrm{x}, \mathrm{y}, \mathrm{z}]$ is not a row, then $[0,1,0]-[\mathrm{x}, \mathrm{y}, \mathrm{z}]$ is not a row.

Given rows $\left[\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right]$ and $\left[\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right]$ that sum to another row.
By the lemma, $[0,1,0]-\left(\left[\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right]+\left[\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right]\right)$ equals a row, call it $\left[\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right]$. Rearranging the equation so that $\left[\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right]$ alone is on the right side we see that $\left[\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right]+\left[\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right]$ is a row; so that $\left[\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right]$ alone is on the right side we see that $\left[\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right]+\left[\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right]$ is a row. Moving all the triples to the right side we get

$$
[0,1,0]=\left[\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right]+\left[\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right]+\left[\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}\right] \text { QED. }
$$

Examples of two rows that sum to $[0,1,0]$ and I's and θ 's are switched:
(1) $\left[\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right]+\left[\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right]=[2,2,1]+[-2,-1,-1]=[0,1,0]$, $\mathrm{f}_{1}(\mathrm{a}, \mathrm{b})+\mathrm{f}_{2}(\mathrm{a}, \mathrm{b})=(2 \mathrm{ab}+2(\mathrm{a}+\mathrm{b})+1)+(-2 \mathrm{ab}-(\mathrm{a}+\mathrm{b})-1)=\mathrm{a}+\mathrm{b} ;$

$$
\begin{array}{ll}
I_{1}=-\frac{z_{1}}{y_{1}}=-\frac{1}{2}, & \theta_{1}=-\frac{y_{1}}{x_{1}}=-1, \\
I_{2}=-\frac{z_{2}}{y_{2}}=-1=\theta_{1}, & \theta_{2}=-\frac{y_{2}}{x_{2}}=-\frac{1}{2}=I_{1} ; \\
\frac{I_{1}}{\theta_{2}}+\frac{I_{2}}{\theta_{1}}=\frac{-\frac{1}{2}}{-\frac{1}{2}}+\frac{-1}{-1}=2 .
\end{array}
$$

(2) $\left[\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right]+\left[\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right]=[15,6,2]+[-15,-5,-2]=[0,1,0]$, $\mathrm{f}_{1}(\mathrm{a}, \mathrm{b})+\mathrm{f}_{2}(\mathrm{a}, \mathrm{b})=(15 \mathrm{ab}+6(\mathrm{a}+\mathrm{b})+2)+(-15 \mathrm{ab}-5(\mathrm{a}+\mathrm{b})-2)=\mathrm{a}+\mathrm{b} ;$
$\mathrm{I}_{1}=-\frac{\mathrm{z}_{1}}{\mathrm{y}_{1}}=-\frac{1}{3}, \quad \theta_{1}=-\frac{\mathrm{y}_{1}}{\mathrm{x}_{1}}=-\frac{2}{5}$,
$\mathrm{I}_{2}=-\frac{\mathrm{z}_{2}}{\mathrm{y}_{2}}=-\frac{2}{5}=\theta_{1}, \quad \theta_{2}=-\frac{\mathrm{y}_{2}}{\mathrm{x}_{2}}=-\frac{1}{3}=\mathrm{I}_{1} ;$
$\frac{\mathrm{I}_{1}}{\theta_{2}}+\frac{\mathrm{I}_{2}}{\theta_{1}}=\frac{-\frac{1}{3}}{-\frac{1}{3}}+\frac{-\frac{2}{5}}{-\frac{2}{5}}=2$.
Example of three rows that sum to a triple with $y^{2}-y-x z=0$ and the rows pairwise sum to a row:

$$
\begin{aligned}
& {[1,7,42]+[2,8,28]+[-3,-14,-70]=[0,1,0] \text { and }} \\
& \quad[1,7,42]+[2,8,28]=[3,15,70], \text { another row; } \\
& {[1,7,42]+[-3,-14,-70]=[-2,-7,-28], \text { another row; }} \\
& {[2,8,28]+[-3,-14,-70]=[-1,-6,-42], \text { another row. }}
\end{aligned}
$$

