The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A329062 Numbers k that are not prime powers (i.e., not in A000961) such that A328925(k) > 1; numbers k such that if we write k = Product_{i=1..t} p_i^e_i , then t > 1, and lcm_{1<=i,j<=t, i!=j} ord(p_i,p_j^e_j) < A002322(k), where ord(a,r) is the multiplicative order of a modulo r, and A002322 is the Carmichael lambda (usually written as psi). 2
14, 34, 39, 46, 55, 62, 65, 68, 82, 86, 94, 95, 98, 111, 112, 117, 123, 124, 133, 136, 142, 145, 146, 153, 155, 158, 164, 172, 175, 178, 183, 194, 201, 203, 205, 206, 209, 218, 219, 221, 224, 226, 248, 253, 254, 259, 272, 274, 275, 287, 291, 292, 295, 299, 301, 302, 305, 309 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Write psi = A002322, b = A118106. These are numbers k that are not prime powers such that b(k) < psi(k).
If k = Product_{i=1..t} p_i^e_i (t > 1), where {p_i} are distinct odd primes such that p_i is a quadratic residue modulo p_j for all i != j, then k is here, as b(k) | psi(k)/2.
If k = 2 * Product_{i=1..t} p_i^e_i, where {p_i} are distinct odd primes such that p_i is a quadratic residue modulo p_j for all i != j, and p_i == 1, 7 (mod 8), then k is here. For example, k = 2p, where p == 1, 7 (mod 8).
If k = 2^e * Product_{i=1..t} p_i^e_i (e > 1), where {p_i} are distinct odd primes such that p_i is a quadratic residue modulo p_j for all i != j, and p_i == 1 (mod 8), then k is here. For example, k = 2^e*p, where p == 1 (mod 8).
If k = p_1^e_1 * p_2^e_2, where p_1 is not a primitive root modulo p_2^e_2, p_2 is not a primitive root modulo p_1^e_1, then k is not necessarily here: for k = 3^2 * 67 = 603, 3 is not a primitive root modulo 67, 67 is not a primitive root modulo 3^2, but b(603) = psi(603) = 66. Conversely, if p_1 is a primitive root modulo p_2^e_2, then k can still be here: for k = 3^2 * 17 = 153, 3 is a primitive root modulo 17, but b(153) = 16 while psi(153) = 48.
If k is an odd number, then 4k is here if and only if 8k is also here. Write k = Product_{i=1..t} p_i^e_i, then b(4k) = lcm(lcm_{i=1..t} ord(p_i,4),lcm_{i=1..t} ord(2,p_i^e_i),b(k)), b(8k) = lcm(lcm_{i=1..t} ord(p_i,8),lcm_{i=1..t} ord(2,p_i^e_i),b(k)). It is easy to see that lcm(ord(p_i,4),ord(2,p_i^e_i)) = lcm(ord(p_i,8),ord(2,p_i^e_i)), so b(4k) = b(8k). Note that psi(4k) = psi(8k).
If k is an odd number such that 4k is here, then 16k is also here (but the converse is not true). Write k = Product_{i=1..t} p_i^e_i, N = lcm(lcm_{i=1..t} ord(2,p_i^e_i),b(k)), then b(4k) = lcm(lcm_{i=1..t} ord(p_i,4),N), b(16k) = lcm(lcm_{i=1..t} ord(p_i,16),N) = b(4k) or b(4k)*2 or b(4k)*4. Note that psi(16k) = lcm(psi(4k),4). If we have b(4k) < psi(4k) and b(16k) = psi(16k), let M = psi(k), then:
Case (a): M == 2 (mod 4), then b(16k) = psi(16k) = 2*psi(4k) = 2M, and b(4k) = b(16k)/4 = M/2 which is an odd number, so ord(2,p_i^e_i) is odd for all i, so p_i == 1, 7 (mod 8), which gives ord(p_i,16) <= 2*ord(p_i,4). As a result, b(16k) <= 2*b(4k), a contradiction!
Case (b): M == 0 (mod 4), then b(16k) = psi(16k) = psi(4k) = M. If N is divisible by 4, then b(4k) = b(16k) = N, a contradiction. So 4 does not divide N, we have v(M,2) = v(lcm(lcm_{i=1..t} ord(p_i,16),N),2) <= 2, but 4 | M, so v(M,2) = 2, where v(,2) is the 2-adic valuation. As a result, there must exist p_i congruent to 5 mod 8 to make v(M,2) = 2, then 4 | ord(2,p_i^e_i), so 4 | N, a contradiction!
{a(n)} union A328926 = N* \ A000961 U {1, 2}.
LINKS
EXAMPLE
Let ord(a,r) be the multiplicative order of a modulo r.
For k = 175 = 5^2 * 7, b(175) = lcm(ord(7,5^2),ord(5,7)) = lcm(4,6) = 12, while psi(175) = lcm(20,6) = 60, so 175 is a term.
For k = 410 = 2 * 5 * 41, b(410) = lcm(ord(5,2),ord(41,2),ord(2,5),ord(41,5),ord(2,41),ord(5,41)) = 20, while psi(410) = lcm(1,4,40) = 40, so 410 is a term.
PROG
(PARI) isA329062(n) = !isprimepower(n) && (A002322(n) > A118106(n)) \\ See A002322 and A118106 for their programs
CROSSREFS
Sequence in context: A175559 A158899 A085777 * A072566 A039449 A120875
KEYWORD
nonn
AUTHOR
Jianing Song, Nov 02 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 15:05 EDT 2024. Contains 373025 sequences. (Running on oeis4.)