The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A325000 Array read by descending antidiagonals: T(n,k) is the number of unoriented colorings of the facets (or vertices) of a regular n-dimensional simplex using up to k colors. 13

%I #26 Oct 21 2020 03:48:50

%S 1,3,1,6,4,1,10,10,5,1,15,20,15,6,1,21,35,35,21,7,1,28,56,70,56,28,8,

%T 1,36,84,126,126,84,36,9,1,45,120,210,252,210,120,45,10,1,55,165,330,

%U 462,462,330,165,55,11,1,66,220,495,792,924,792,495,220,66,12,1

%N Array read by descending antidiagonals: T(n,k) is the number of unoriented colorings of the facets (or vertices) of a regular n-dimensional simplex using up to k colors.

%C For n=1, the figure is a line segment with two vertices. For n=2, the figure is a triangle with three edges. For n=3, the figure is a tetrahedron with four triangular faces. The Schläfli symbol, {3,...,3}, of the regular n-dimensional simplex consists of n-1 threes. Each of its n+1 facets is a regular (n-1)-dimensional simplex. Two unoriented colorings are the same if congruent; chiral pairs are counted as one.

%C Note that antidiagonals are part of rows of the Pascal triangle.

%C T(n,k-n) is the number of chiral pairs of colorings of the facets (or vertices) of a regular n-dimensional simplex using k or fewer colors. - _Robert A. Russell_, Sep 28 2020

%H Robert A. Russell, <a href="/A325000/b325000.txt">Table of n, a(n) for n = 1..1275</a>

%F T(n,k) = binomial(n+k,n+1) = A007318(n+k,n+1).

%F T(n,k) = Sum_{j=1..n+1} A007318(n,j-1) * binomial(k,j).

%F T(n,k) = A324999(n,k) + T(n,k-n) = (A324999(n,k) - A325001(n,k)) / 2 = T(n,k-n) + A325001(n,k). - _Robert A. Russell_, Sep 28 2020

%F G.f. for row n: x / (1-x)^(n+2).

%F Linear recurrence for row n: T(n,k) = Sum_{j=1..n+2} -binomial(j-n-3,j) * T(n,k-j).

%F G.f. for column k: (1 - (1-x)^k) / (x * (1-x)^k) - k.

%F T(n,k-n) = A324999(n,k) - T(n,k) = (A324999(n,k) - A325001(n,k)) / 2 = T(n,k) - A325001(n,k). - _Robert A. Russell_, Oct 10 2020

%e The array begins with T(1,1):

%e 1 3 6 10 15 21 28 36 45 55 66 78 91 105 ...

%e 1 4 10 20 35 56 84 120 165 220 286 364 455 560 ...

%e 1 5 15 35 70 126 210 330 495 715 1001 1365 1820 2380 ...

%e 1 6 21 56 126 252 462 792 1287 2002 3003 4368 6188 8568 ...

%e 1 7 28 84 210 462 924 1716 3003 5005 8008 12376 18564 27132 ...

%e 1 8 36 120 330 792 1716 3432 6435 11440 19448 31824 50388 77520 ...

%e 1 9 45 165 495 1287 3003 6435 12870 24310 43758 75582 125970 203490 ...

%e 1 10 55 220 715 2002 5005 11440 24310 48620 92378 167960 293930 497420 ...

%e ...

%e For T(1,2) = 3, the two achiral colorings use just one of the two colors for both vertices; the chiral pair uses two colors. For T(2,2)=4, the triangle may have 0, 1, 2, or 3 edges of one color.

%t Table[Binomial[d+1,n+1], {d,1,15}, {n,1,d}] // Flatten

%Y Cf. A324999 (oriented), A325001 (achiral).

%Y Unoriented: A007318(n,k-1) (exactly k colors), A327084 (edges, ridges), A337884 (faces, peaks), A325005 (orthotope facets, orthoplex vertices), A325013 (orthoplex facets, orthotope vertices).

%Y Chiral: A327085 (edges, ridges), A337885 (faces, peaks), A325006 (orthotope facets, orthoplex vertices), A325014 (orthoplex facets, orthotope vertices).

%Y Cf. A104712 (same sequence for a triangle; same sequence apart from offset).

%Y Rows 1-4 are A000217, A000292, A000332(n+3), A000389(n+4). - _Robert A. Russell_, Sep 28 2020

%K nonn,tabl,easy

%O 1,2

%A _Robert A. Russell_, Mar 23 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 09:20 EDT 2024. Contains 372540 sequences. (Running on oeis4.)