The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322620 E.g.f.: A(x,y) = (cosh(x)*cosh(y) + sinh(x) + sinh(y)) / (1 - sinh(x)*sinh(y)), where A(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k/(n+k)!, as a square table of coefficients T(n,k) read by antidiagonals. 10

%I #37 Dec 29 2018 17:40:09

%S 1,1,1,1,2,1,1,6,6,1,1,16,30,16,1,1,40,140,140,40,1,1,96,615,1040,615,

%T 96,1,1,224,2562,7000,7000,2562,224,1,1,512,10220,43904,68390,43904,

%U 10220,512,1,1,1152,39384,260736,605808,605808,260736,39384,1152,1,1,2560,147645,1482240,4998210,7322112,4998210,1482240,147645,2560,1,1,5632,541310,8131200,39032400,80735424,80735424,39032400,8131200,541310,5632,1,1,12288,1948650,43310080,291662415,831080448,1161583500,831080448,291662415,43310080,1948650,12288,1

%N E.g.f.: A(x,y) = (cosh(x)*cosh(y) + sinh(x) + sinh(y)) / (1 - sinh(x)*sinh(y)), where A(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^n*y^k/(n+k)!, as a square table of coefficients T(n,k) read by antidiagonals.

%C Compare to the addition theorem of Jacobi's elliptic functions: cn(x+y) + i*sn(x+y) = (cn(x) + i*sn(x)*dn(y)) * (cn(y) + i*sn(y)*dn(x)) / (1 - k^2*sn(x)^2*sn(y)^2), where the modulus k is implicit.

%C See A322190 for another description of the e.g.f. of this sequence.

%H Paul D. Hanna, <a href="/A322620/b322620.txt">Table of n, a(n) for n = 0..1325 terms of this square table read by antidiagonals across rows 0..50.</a>

%F E.g.f.: A(x,y) = (cosh(x) + sinh(x)*cosh(y)) * (cosh(y) + sinh(y)*cosh(x)) / (1 - sinh(x)^2*sinh(y)^2).

%F E.g.f.: A(x,y) = (cosh(x) + sinh(x)*cosh(y)) / (cosh(y) - sinh(y)*cosh(x)).

%F E.g.f.: A(x,y) = (cosh(y) + sinh(y)*cosh(x)) / (cosh(x) - sinh(x)*cosh(y)).

%F E.g.f.: A(x,y) = C(x,y) + S(x,y) such that the following identities hold.

%F (1) C(x,y)^2 - S(x,y)^2 = 1.

%F (2a) C(x,y) = cosh(x) * cosh(y) / (1 - sinh(x)*sinh(y)).

%F (2b) S(x,y) = (sinh(x) + sinh(y)) / (1 - sinh(x)*sinh(y)).

%F (3a) cosh(x) = C(x,y) * cosh(y) / (1 + sinh(y)*S(x,y)).

%F (3b) sinh(x) = (S(x,y) - sinh(y)) / (1 + sinh(y)*S(x,y)).

%F (3c) cosh(y) = C(x,y) * cosh(x) / (1 + sinh(x)*S(x,y)).

%F (3d) sinh(y) = (S(x,y) - sinh(x)) / (1 + sinh(x)*S(x,y)).

%F (4a) exp(x) = (C(x,y)*cosh(y) + S(x,y) - sinh(y)) / (1 + sinh(y)*S(x,y)).

%F (4b) exp(y) = (C(x,y)*cosh(x) + S(x,y) - sinh(x)) / (1 + sinh(x)*S(x,y)).

%F (5a) exp(x) = (C(x,y) + S(x,y)*cosh(y)) * (cosh(y) - sinh(y)*C(x,y)) / (1 - sinh(y)^2*S(x,y)^2).

%F (5b) exp(y) = (C(x,y) + S(x,y)*cosh(x)) * (cosh(x) - sinh(x)*C(x,y)) / (1 - sinh(x)^2*S(x,y)^2).

%F (6a) exp(x) = (C(x,y) + S(x,y)*cosh(y)) / (cosh(y) + sinh(y)*C(x,y)).

%F (6b) exp(y) = (C(x,y) + S(x,y)*cosh(x)) / (cosh(x) + sinh(x)*C(x,y)).

%F SPECIAL ARGUMENTS.

%F A(x, y=0) = exp(x).

%F A(x, y=x) = (1 + sinh(x)) / (1 - sinh(x)).

%F A(x, y=-x) = 1.

%F FORMULAS FOR TERMS.

%F a(n) = binomial(n,k) * A322190(n,k).

%F Sum_{k=0..n} 2^k * T(n,k) = A245140(n).

%F Sum_{k=0..n} 3^k * T(n,k) = A245155(n).

%F Sum_{k=0..n} 2^(n-k) * 3^k * T(n,k) = A245166(n).

%e E.g.f.: A(x,y) = 1 + (1*x + 1*y) + (1*x^2 + 2*x*y + 1*y^2)/2! + (1*x^3 + 6*x^2*y + 6*x*y^2 + 1*y^3)/3! + (1*x^4 + 16*x^3*y + 30*x^2*y^2 + 16*x*y^3 + 1*y^4)/4! + (1*x^5 + 40*x^4*y + 140*x^3*y^2 + 140*x^2*y^3 + 40*x*y^4 + 1*y^5)/5! + (1*x^6 + 96*x^5*y + 615*x^4*y^2 + 1040*x^3*y^3 + 615*x^2*y^4 + 96*x*y^5 + 1*y^6)/6! + (1*x^7 + 224*x^6*y + 2562*x^5*y^2 + 7000*x^4*y^3 + 7000*x^3*y^4 + 2562*x^2*y^5 + 224*x*y^6 + 1*y^7)/7! + (1*x^8 + 512*x^7*y + 10220*x^6*y^2 + 43904*x^5*y^3 + 68390*x^4*y^4 + 43904*x^3*y^5 + 10220*x^2*y^6 + 512*x*y^7 + 1*y^8)/8! + ...

%e where A(x,y) = (cosh(x)*cosh(y) + sinh(x) + sinh(y)) / (1 - sinh(x)*sinh(y)).

%e This square table of coefficients of x^n*y^k/(n+k)! in A(x,y) begins

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;

%e 1, 2, 6, 16, 40, 96, 224, 512, 1152, ...;

%e 1, 6, 30, 140, 615, 2562, 10220, 39384, 147645, ...;

%e 1, 16, 140, 1040, 7000, 43904, 260736, 1482240, 8131200, ...;

%e 1, 40, 615, 7000, 68390, 605808, 4998210, 39032400, 291662415, ...;

%e 1, 96, 2562, 43904, 605808, 7322112, 80735424, 831080448, 8105175936, ...;

%e 1, 224, 10220, 260736, 4998210, 80735424, 1161583500, 15355426944, ...;

%e 1, 512, 39384, 1482240, 39032400, 831080448, 15355426944, 256124504064, ...; ...

%e This sequence may be written as a triangle, starting as

%e 1,

%e 1, 1,

%e 1, 2, 1,

%e 1, 6, 6, 1;

%e 1, 16, 30, 16, 1;

%e 1, 40, 140, 140, 40, 1;

%e 1, 96, 615, 1040, 615, 96, 1;

%e 1, 224, 2562, 7000, 7000, 2562, 224, 1;

%e 1, 512, 10220, 43904, 68390, 43904, 10220, 512, 1;

%e 1, 1152, 39384, 260736, 605808, 605808, 260736, 39384, 1152, 1;

%e 1, 2560, 147645, 1482240, 4998210, 7322112, 4998210, 1482240, 147645, 2560, 1; ...

%e RELATED SERIES.

%e The series expansions for C(x,y) and S(x,y) are given by

%e C(x,y) = 1 + (1*x^2 + 2*x*y + 1*y^2)/2! + (1*x^4 + 16*x^3*y + 30*x^2*y^2 + 16*x*y^3 + 1*y^4)/4! + (1*x^6 + 96*x^5*y + 615*x^4*y^2 + 1040*x^3*y^3 + 615*x^2*y^4 + 96*x*y^5 + 1*y^6)/6! + (1*x^8 + 512*x^7*y + 10220*x^6*y^2 + 43904*x^5*y^3 + 68390*x^4*y^4 + 43904*x^3*y^5 + 10220*x^2*y^6 + 512*x*y^7 + 1*y^8)/8! + ...

%e S(x,y) = (1*x + 1*y) + (1*x^3 + 6*x^2*y + 6*x*y^2 + 1*y^3)/3! + (1*x^5 + 40*x^4*y + 140*x^3*y^2 + 140*x^2*y^3 + 40*x*y^4 + 1*y^5)/5! + (1*x^7 + 224*x^6*y + 2562*x^5*y^2 + 7000*x^4*y^3 + 7000*x^3*y^4 + 2562*x^2*y^5 + 224*x*y^6 + 1*y^7)/7! + ...

%e where A(x,y) = C(x,y) + S(x,y) such that C(x,y)^2 - S(x,y)^2 = 1.

%e The e.g.f. may be written with coefficients of x^n*y^k/(n!*k!), as follows:

%e A(x,y) = 1 + (1*x + 1*y) + (1*x^2/2! + 1*x*y + 1*y^2/2!) + (1*x^3/3! + 2*x^2*y/2! + 2*x*y^2/2! + 1*y^3/3!) + (1*x^4/4! + 4*x^3*y/3! + 5*x^2*y^2/(2!*2!) + 4*x*y^3/3! + 1*y^4/4!) + (1*x^5/5! + 8*x^4*y/4! + 14*x^3*y^2/(3!*2!) + 14*x^2*y^3/(2!*3!) + 8*x*y^4/4! + 1*y^5/5!) + (1*x^6/6! + 16*x^5*y/5! + 41*x^4*y^2/(4!*2!) + 52*x^3*y^3/(3!*3!) + 41*x^2*y^4/(2!*4!) + 16*x*y^5/5! + 1*y^6/6!) + (1*x^7/7! + 32*x^6*y/6! + 122*x^5*y^2/(5!*2!) + 200*x^4*y^3/(4!*3!) + 200*x^3*y^4/(3!*4!) + 122*x^2*y^5/(2!*5!) + 32*x*y^6/6! + 1*y^7/7!) + (1*x^8/8! + 64*x^7*y/7! + 365*x^6*y^2/(6!*2!) + 784*x^5*y^3/(5!*3!) + 977*x^4*y^4/(4!*4!) + 784*x^3*y^5/(3!*5!) + 365*x^2*y^6/(2!*6!) + 64*x*y^7/7! + 1*y^8/8!) + ...

%e these coefficients are described by table A322190.

%t nmax = 12;

%t t[n_, k_] := SeriesCoefficient[(Cosh[x] Cosh[y] + Sinh[x] + Sinh[y])/(1 - Sinh[x] Sinh[y]), {x, 0, n}, {y, 0, k}] (n + k)!;

%t tt = Table[t[n, k], {n, 0, nmax}, {k, 0, nmax}];

%t T[n_, k_] := tt[[n+1, k+1]];

%t Table[T[n-k, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Dec 26 2018 *)

%o (PARI) {T(n,k) = my(X=x+x*O(x^n),Y=y+y*O(y^k));

%o C = cosh(X)*cosh(Y)/(1 - sinh(X)*sinh(Y));

%o S = (sinh(X) + sinh(Y))/(1 - sinh(X)*sinh(Y));

%o (n+k)!*polcoeff(polcoeff(C + S,n,x),k,y)}

%o /* Print as a square table */

%o for(n=0,10,for(k=0,10,print1( T(n,k),", "));print(""))

%o /* Print as a triangle */

%o for(n=0,15,for(k=0,n,print1( T(n-k,k),", "));print(""))

%Y Cf. A322621 (C(x,y)), A322622 (S(x,y)), A322623 (antidiagonal sums), A322624 (main diagonal), A322625, A057711 (column 1).

%Y Cf. A322190, A245140, A245155, A245166.

%K nonn,tabl

%O 0,5

%A _Paul D. Hanna_, Dec 20 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 05:22 EDT 2024. Contains 373010 sequences. (Running on oeis4.)