The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320832 Continued fraction of a constant t with partial denominators {a(n), n>=0} such that the continued fraction of 2*t yields partial denominators {3*a(n), n>=0}. 5
1, 1, 1, 1, 6, 1, 1, 1, 8, 1, 1, 1, 6, 1, 1, 1, 11, 1, 1, 1, 6, 1, 1, 1, 8, 1, 1, 1, 6, 1, 1, 1, 16, 6, 1, 1, 1, 1, 36, 1, 1, 1, 1, 6, 12, 6, 1, 1, 1, 1, 36, 1, 1, 1, 1, 6, 24, 36, 1, 1, 1, 1, 6, 1, 1, 1, 53, 1, 1, 1, 6, 1, 1, 1, 1, 36, 18, 36, 1, 1, 1, 1, 6, 1, 1, 1, 53, 1, 1, 1, 6, 1, 1, 1, 1, 36, 36, 216, 1, 1, 1, 1, 6, 1, 1, 1, 8, 1, 1, 1, 6, 1, 1, 1, 79, 6, 1, 1, 1, 1, 36, 1, 1, 1, 1, 6, 1, 1, 1, 53, 1, 1, 26, 1, 1, 53, 1, 1, 1, 6, 1, 1, 1, 1, 36, 1, 1, 1, 1, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Is this constant transcendental?
Compare to the continued fraction expansions of sqrt(3) and 3*sqrt(3), which are related by a factor of 5: sqrt(3) = [1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...] and 3*sqrt(3) = [5; 5, 10, 5, 10, 5, 10, 5, 10, 5, 10, ...].
Further, let CF(x) denote the simple continued fraction expansion of x, then we have the related identities which hold for n >= 1:
(C1) CF( (4*n+1) * sqrt((n+1)/n) ) = (4*n+3) * CF( sqrt((n+1)/n) ),
(C2) CF( (2*n+1) * sqrt((n+2)/n) ) = (2*n+3) * CF( sqrt((n+2)/n) ).
LINKS
FORMULA
Given t = [a(0); a(1), a(2), a(3), a(4), a(5), a(6), ...], some related simple continued fractions are:
(1) 2*t = [3*a(0); 3*a(1), 3*a(2), 3*a(3), 3*a(4), 3*a(5), ...],
(2) 2*t/3 = [a(0); 9*a(1), a(2), 9*a(3), a(4), 9*a(5), a(6), ...],
(3) 6*t = [9*a(0); a(1), 9*a(2), a(3), 9*a(4), a(5), 9*a(6), ...].
EXAMPLE
The decimal expansion of this constant t begins:
t = 1.6514904747308816380867968444430065786661319067679...
The simple continued fraction expansion of t begins:
t = [1; 1, 1, 1, 6, 1, 1, 1, 8, 1, 1, 1, 6, 1, 1, 1, 11, 1, 1, 1, 6, 1, 1, 1, 8, 1, 1, 1, 6, 1, 1, 1, 16, 6, ..., a(n), ...]
such that the simple continued fraction expansion of 2*t begins:
2*t = [3; 3, 3, 3, 18, 3, 3, 3, 24, 3, 3, 3, 18, 3, 3, 3, 33, 3, 3, 3, 18, 3, 3, 3, 24, 3, 3, 3, 18, 3, 3, 3, 48, 18, ..., 3*a(n), ...].
...
The initial 1000 terms of the simple continued fraction expansion of t are
t = [1;1,1,1,6,1,1,1,8,1,1,1,6,1,1,1,11,1,1,1,6,1,1,1,8,1,
1,1,6,1,1,1,16,6,1,1,1,1,36,1,1,1,1,6,12,6,1,1,1,1,36,
1,1,1,1,6,24,36,1,1,1,1,6,1,1,1,53,1,1,1,6,1,1,1,1,36,
18,36,1,1,1,1,6,1,1,1,53,1,1,1,6,1,1,1,1,36,36,216,1,1,1,
1,6,1,1,1,8,1,1,1,6,1,1,1,79,6,1,1,1,1,36,1,1,1,1,6,
1,1,1,53,1,1,26,1,1,53,1,1,1,6,1,1,1,1,36,1,1,1,1,6,79,
1,1,1,6,1,1,1,8,1,1,1,6,1,1,1,1,216,54,1296,1,1,1,1,6,1,
1,1,8,1,1,1,6,1,1,1,11,1,1,1,6,1,1,1,8,1,1,1,6,1,1,
1,118,36,1,1,1,1,6,1,1,1,53,1,1,1,6,1,1,1,1,36,1,1,1,1,
6,79,1,1,1,6,39,6,1,1,1,79,6,1,1,1,1,36,1,1,1,1,6,1,1,
1,53,1,1,1,6,1,1,1,1,36,118,1,1,1,6,1,1,1,8,1,1,1,6,1,
1,1,11,1,1,1,6,1,1,1,8,1,1,1,6,1,1,1,1,1296,81,7776,1,1,1,
1,6,1,1,1,8,1,1,1,6,1,1,1,11,1,1,1,6,1,1,1,8,1,1,1,
6,1,1,1,16,6,1,1,1,1,36,1,1,1,1,6,12,6,1,1,1,1,36,1,1,
1,1,6,177,216,1,1,1,1,6,1,1,1,8,1,1,1,6,1,1,1,79,6,1,1,
1,1,36,1,1,1,1,6,1,1,1,53,1,1,1,6,1,1,1,1,36,118,1,1,1,
6,1,1,1,8,1,1,58,36,1,1,1,1,6,118,1,1,8,1,1,1,6,1,1,1,
1,216,1,1,1,1,6,1,1,1,8,1,1,1,6,1,1,1,79,6,1,1,1,1,36,
1,1,1,1,6,1,1,1,53,1,1,176,1,1,1,6,1,1,1,8,1,1,1,6,1,
1,1,11,1,1,1,6,1,1,1,8,1,1,1,6,1,1,1,16,6,1,1,1,1,36,
1,1,1,1,6,12,6,1,1,1,1,36,1,1,1,1,6,1,1,1,1943,1,1,121,46656,
1,1,1,1,6,1,1,1,8,1,1,1,6,1,1,1,11,1,1,1,6,1,1,1,8,
1,1,1,6,1,1,1,16,6,1,1,1,1,36,1,1,1,1,6,12,6,1,1,1,1,
36,1,1,1,1,6,24,36,1,1,1,1,6,1,1,1,53,1,1,1,6,1,1,1,1,
36,18,36,1,1,1,1,6,1,1,1,53,1,1,1,6,1,1,1,1,36,265,1,1,323,
1,1,1,6,1,1,1,1,36,1,1,1,1,6,12,6,1,1,1,1,36,1,1,1,1,
6,118,1,1,8,1,1,1,6,1,1,1,1,216,1,1,1,1,6,1,1,1,8,1,1,
1,6,1,1,1,79,6,1,1,1,1,36,1,1,1,1,6,1,1,1,53,1,1,176,1,
1,1,6,1,1,1,8,1,1,1,6,1,1,1,11,1,1,1,6,87,216,1,1,1,1,
6,1,1,1,8,1,1,176,1,1,1,6,12,6,1,1,1,1,36,1,1,1,1,6,1,
1,1,323,1,1,1,6,1,1,1,1,36,1,1,1,1,6,12,6,1,1,1,1,36,1,
1,1,1,6,118,1,1,8,1,1,1,6,1,1,1,1,216,1,1,1,1,6,1,1,1,
8,1,1,1,6,1,1,1,79,6,1,1,1,263,1,1,1,6,1,1,1,8,1,1,1,
6,1,1,1,11,1,1,1,6,1,1,1,8,1,1,1,6,1,1,1,16,6,1,1,1,
1,36,1,1,1,1,6,12,6,1,1,1,1,36,1,1,1,1,6,24,36,1,1,1,1,
6,1,1,1,53,1,1,1,6,1,1,1,1,36,18,36,1,1,1,1,6,1,1,1,53,
1,1,1,6,1,1,1,1,36,1,1,1,1,6,2914,1,1,1,6,181,1,1,69983,1,1,
1,6,1,1,1,1,36,1,1,1,1,6,12,6,1,1,1,1,36,1,1,1,1,6,16,
1,1,1,6,1,1,1,8,1,1,1,6,1,1,1,11,1,1,1,6,1,1,1,8,1,
1,1,6,1,1,1,23,1,1,8,1,1,1,6,1,1,1,1,216,1,1,1,1,6, ...].
...
The initial 1000 digits of constant t are
t = 1.65149047473088163808679684444300657866613190676791\
28737714830270861698007448681310643103951379451671\
54114507647362346731655343736679236451104324525424\
37390179560582497835710083063843943037795949756748\
97440995664382615322263468614614477737059496505552\
08331434371348884420941679386949556166027674330855\
36885812669651061905701771944991773909674239753715\
13170920756343463276796919694602222128457275152421\
55344241016460665248526708333389356493782455903465\
51804053948550486808342254050578114807877804220843\
95652198152342146601232467945702955643471515688899\
60645600818470508698165499450873578310068410378749\
13752238554732608875401892185360771843689733221676\
17468480327947937646720546426241804321256694683699\
70360475351525492330828064189641281507963387604040\
39551897256028156761617895973905334533561413827981\
22417201150520589772826034062665207814244141469100\
63982517271814133206125657700492407641669772124988\
49178505556132383776229702780090744171002180938101\
95839491920468860210551810985143159776520025263372...
GENERATING METHOD.
Start with CF = [1] and repeat (PARI code):
t = (1/2)*contfracpnqn(3*CF)[1,1]/contfracpnqn(3*CF)[2,1]; CF = contfrac(t)
This method can be illustrated as follows.
t0 = [1] = 1 ;
t1 = (1/2)*[3] = [1; 2] = 3/2 ;
t2 = (1/2)*[3; 6] = [1; 1, 1, 2, 2] = 19/12 ;
t3 = (1/2)*[3; 3, 3, 6, 6] = [1, 1, 1, 1, 6, 3, 12] = 1281/776 ;
t4 = (1/2)*[3; 3, 3, 3, 18, 9, 36] = [1; 1, 1, 1, 6, 1, 1, 1, 8, 1, 1, 4, 72] = 652299/394976 ;
t5 = (1/2)*[3; 3, 3, 3, 18, 3, 3, 3, 24, 3, 3, 12, 216] = [1, 1, 1, 1, 6, 1, 1, 1, 8, 1, 1, 1, 6, 1, 1, 1, 11, 1, 1, 1, 6, 6, 432] = 43763571081/26499438992 ; ...
The above method generates terms with exponential growth; the number of terms with each iteration begins:
[1, 2, 5, 7, 13, 23, 41, 71, 121, 214, 377, 662, 1170, 2082, 3681, 6535, 11632, 20700, 36799, 65472,...].
PROG
(PARI) /* Generates over 3600 terms of the continued fraction */
CF=[1];
{for(i=1, 14, t = (contfracpnqn(3*CF)[1, 1]/contfracpnqn(3*CF)[2, 1])/2;
CF = contfrac(t) ); CF }
CROSSREFS
Sequence in context: A344697 A364917 A364944 * A034460 A063919 A308135
KEYWORD
nonn,cofr
AUTHOR
Paul D. Hanna, Oct 22 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 12:00 EDT 2024. Contains 373018 sequences. (Running on oeis4.)