The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320159 Number of positive integers x < prime(n)/2 such that (x^2 mod prime(n)) > (4*x^2 mod prime(n)). 1
0, 0, 1, 2, 2, 3, 4, 5, 4, 7, 9, 9, 10, 11, 9, 13, 13, 15, 17, 14, 18, 22, 19, 22, 24, 25, 28, 25, 27, 28, 34, 30, 34, 36, 37, 41, 39, 41, 36, 43, 42, 45, 41, 48, 49, 54, 54, 59, 54, 57, 58, 52, 60, 59, 64, 59, 67, 73, 69, 70, 72, 73, 78, 68, 78, 79, 84, 84, 84, 87, 88, 80, 96, 93, 96, 87, 97, 99, 100, 102 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Conjecture: Let p > 3 be a prime and let b be any integer. For a = 2,...,p-1 let I(a,b) denote the number of positive integers x < p/2 with (x^2+b mod p) > (a*x^2+b mod p). Then both S = {I(a,b): 1 < a < p and (a/p) = 1} and T = {I(a,b): 1 < a < p and (a/p) = -1} have cardinality 1 or 2 according as p is congruent to 1 or 3 modulo 4, where (a/p) is the Legendre symbol. Moreover, the set S deos not depend on the value of b.
For any prime p == 1 (mod 4), we have q^2 == -1 (mod p) for some integer q, hence ((q*x)^2 mod p) > (a*(q*x)^2 mod p) if and only if (x^2 mod p) < (a*x^2 mod p). Thus, for each a = 2,...,p-1 there are exactly (p-1)/4 positive integers x < p/2 such that (x^2 mod p) > (a*x^2 mod p). Thus I(a,0) = (p-1)/4 for all a = 2,...,p-1.
The conjecture was confirmed by Q.-H. Hou, H. Pan and Z.-W. Sun in 2021. - Zhi-Wei Sun, Jul 22 2021
LINKS
Qing-Hu Hou and Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Qing-Hu Hou, Hao Pan and Zhi-Wei Sun, A new theorem on quadratic residues modulo primes, arXiv:2107.08984 [math.NT], 2021.
Zhi-Wei Sun, Quadratic residues and related permutations, arXiv:1809.7766 [math.NT], 2018.
EXAMPLE
a(3) = 1 since prime(3) = 5, (1^2 mod 5) < (4*1^2 mod 5) and (2^2 mod 5) > (4*2^2 mod 5).
a(4) = 2 since prime(4) = 7, (1^2 mod 7) < (4*1^2 mod 7), (2^2 mod 7) > (4*2^2 mod 7) and (3^2 mod 7) > (4*3^2 mod 7).
MATHEMATICA
Inv[p_]:=Inv[p]=Sum[Boole[Mod[x^2, p]>Mod[4x^2, p]], {x, 1, (p-1)/2}]; Table[Inv[Prime[n]], {n, 1, 80}]
PROG
(PARI) a(n) = my(p=prime(n), m=p\2); if (n==1, m--); sum(k=1, m, lift(Mod(k, p)^2) > lift(Mod(2*k, p)^2)); \\ Michel Marcus, Oct 07 2018
CROSSREFS
Sequence in context: A241397 A331049 A350127 * A342879 A342880 A337774
KEYWORD
nonn
AUTHOR
Qing-Hu Hou and Zhi-Wei Sun, Oct 06 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 21:38 EDT 2024. Contains 372758 sequences. (Running on oeis4.)