The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300219 Number of ways to write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and z <= w such that both x and 4*x - 3*y are powers of 4 (including 4^0 = 1). 35
1, 1, 1, 1, 1, 3, 2, 1, 5, 2, 2, 1, 3, 3, 1, 1, 2, 2, 2, 1, 8, 3, 2, 3, 4, 3, 4, 2, 8, 5, 4, 1, 7, 6, 4, 5, 1, 3, 6, 2, 9, 6, 3, 2, 8, 4, 2, 1, 5, 3, 7, 3, 4, 6, 3, 3, 7, 4, 5, 1, 3, 5, 3, 1, 2, 9, 4, 2, 11, 3, 6, 2, 6, 7, 3, 2, 4, 5, 4, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 4^k*m (k = 0,1,2,... and m = 1, 2, 3, 5, 15, 37, 83, 263). Also, for each n = 2,3,... we can write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that both x and 4*x - 3*y lie in the set {2^(2k+1): k = 0,1,...}.
(ii) Let r be 0 or 1, and let n > r. Then n^2 can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that both x and x + 3*y belong to the set {2^(2k+r): k = 0,1,2,...}, unless n has the form 2^(2k+r)*81503 with k a nonnegative integer and hence n^2 = (2^(2k+r)*28^2)^2 + (2^(2k+r)*80)^2 + (2^(2k+r)*55937)^2 + (2^(2k+r)*59272)^2 with 2^(2k+r)*28^2 = 2^r*(2^k*28)^2 and 2^(2k+r)*28^2 + 3*(2^(2k+r)*80) = 2^(2(k+5)+r). So we always can write n^2 as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x/2^r is a square and (x+3*y)/2^r is a power of 4.
In arXiv:1701.05868 the author proved that for each r = 0,1 and n > r we can write n^2 as (2^(2k+r))^2 + x^2 + y^2 + z^2 with k,x,y,z nonnegative integers.
We have verified both parts of the conjecture for n up to 10^7.
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017-2018.
EXAMPLE
a(2) = 1 since 2^2 = 1^2 + 1^2 + 1^2 + 1^2 with 1 = 4^0 and 4*1 - 3*1 = 4^0.
a(3) = 1 since 3^2 = 1^2 + 0^2 + 2^2 + 2^2 with 1 = 4^0 and 4*1 - 3*0 = 4^1.
a(5) = 1 since 5^2 = 4^2 + 0^2 + 0^2 + 3^2 with 4 = 4^1 and 4*4 - 3*0 = 4^2.
a(15) = 1 since 15^2 = 4^2 + 4^2 + 7^2 + 12^2 with 4 = 4^1 and 4*4 - 3*4 = 4^1.
a(37) = 1 since 37^2 = 16^2 + 16^2 + 4^2 + 29^2 with 16 = 4^2 and 4*16 - 3*16 = 4^2.
a(83) = 1 since 83^2 = 4^2 + 4^2 + 56^2 + 61^2 with 4 = 4^1 and 4*4 - 3*4 = 4^1.
a(263) = 1 since 263^2 = 4^2 + 5^2 + 22^2 + 262^2 with 4 = 4^1 and 4*4 - 3*5 = 4^0.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
Do[r=0; Do[If[SQ[n^2-16^k-((4^(k+1)-4^m)/3)^2-z^2], r=r+1], {k, 0, Log[4, n]}, {m, Ceiling[Log[4, Max[1, 4^(k+1)-3*Sqrt[n^2-16^k]]]], k+1}, {z, 0, Sqrt[(n^2-16^k-((4^(k+1)-4^m)/3)^2)/2]}]; Print[n, " ", r]; Label[aa], {n, 1, 80}]
CROSSREFS
Sequence in context: A182236 A077819 A030313 * A278817 A171746 A113977
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 28 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 12:27 EDT 2024. Contains 372712 sequences. (Running on oeis4.)