The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299469 p-adic digits of the unique simple zero of the p-adic zeta-function zeta_{(p,l)} with (p,l) = (59,44). 3

%I #8 Apr 11 2018 12:05:02

%S 15,25,40,36,18,11,17,28,58,9,51,13,25,41,44,17,43,35,21,10,21,38,9,

%T 12,40,43,45,30,41,0,3,25,34,49,45,9,19,48,57,11,13,29,28,44,41,37,33,

%U 29,43,8,57,12,48,15,15,53,57,16,51,16,54,30,9,26,8,49,22,58,11,42,28,36,33,45,24,32,18,12,29,45,40,27,19,40,41,11,42,49,35,41,57,54,33,0,34,34,49,6,31

%N p-adic digits of the unique simple zero of the p-adic zeta-function zeta_{(p,l)} with (p,l) = (59,44).

%C The p-adic digits are used to compute A299466(n) = least even integer k such that numerator(B_k) == 0 (mod 59^n) (see 2nd formula below and the program in A299466).

%C The algorithm used in the Mathematica program below is from Kellner 2007, Prop. 5.3, p. 428.

%C The corresponding sequences for (p,l) = (37,32) and (p,l) = (67,58) are A299468 and A299470, respectively.

%H Bernd C. Kellner and Jonathan Sondow, <a href="/A299469/b299469.txt">Table of n, a(n) for n = 0..98</a>

%H Bernd C. Kellner, <a href="http://bernoulli.org/">The Bernoulli Number Page</a>

%H Bernd C. Kellner, <a href="http://dx.doi.org/10.1090/S0025-5718-06-01887-4">On irregular prime power divisors of the Bernoulli numbers</a>, Math. Comp. 76 (2007) 405-441.

%F 0 <= a(n) <= 58.

%F l + (p - 1)*Sum_{i=0..n-2} a(i)*p^i = A299466(n) with (p,l) = (59,44).

%e The zero is given by a(0) + a(1)*p + a(2)*p^2 + ... with p = 59.

%t n = 99; p = 59; l = 44;

%t ModR[x_, m_] := Mod[Mod[Numerator[x], m] PowerMod[Denominator[x], -1, m], m];

%t B[n_] := -(1 - p^(n - 1)) BernoulliB[n]/n;

%t T[r_, k_, x_] := Sum[(-1)^(j + k) Binomial[j, k] Binomial[x, j], {j, k, r}];

%t zt = Table[ModR[B[l + (p - 1) k]/p, p^n], {k, 0, n}];

%t Z[n_] := zt[[n + 1]]; d = Mod[Z[0] - Z[1], p]; t = 0; L = {};

%t For[r = 1, r <= n, r++, x = Mod[Sum[Z[k] T[r, k, t], {k, 0, r}], p^r];

%t s = ModR[x/(d*p^(r - 1)), p]; AppendTo[L, s]; t += s*p^(r - 1)];

%t Print[L]

%Y Cf. A251782, A299466, A299467, A299468, A299470.

%K nonn

%O 0,1

%A _Bernd C. Kellner_ and _Jonathan Sondow_, Apr 08 2018

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 12:54 EDT 2024. Contains 372913 sequences. (Running on oeis4.)