A general formula for the Frobenius number $\mathrm{F}(\mathrm{n}+1, \mathrm{n}+2, . ., \mathrm{n}+\mathrm{r})$
A positive integer
(1) $\mathrm{x}=\mathrm{k}^{*}(\mathrm{n}+1)+\mathrm{j}$, with $\mathrm{k}>0$ and $0<=\mathrm{j}<=\mathrm{n}$, can be written as a linear combination of $\mathrm{n}+1, \mathrm{n}+2, . ., \mathrm{n}+\mathrm{r}$:
(2) $\mathrm{x}=\mathrm{c}(1)^{*}(\mathrm{n}+1)+\mathrm{c}(2)^{*}(\mathrm{n}+2)+\ldots+\mathrm{c}(\mathrm{r})^{*}(\mathrm{n}+\mathrm{r})=\sum_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{c}(\mathrm{i}) *(\mathrm{n}+\mathrm{i})$

We must solve this equation with suitable coefficients $\mathrm{c}(\mathrm{i})$ and look for a condition that these are non-negative.

The transformation (3) $\mathrm{x}=(\mathrm{n}+1)^{*} \sum_{\mathrm{i}=1}^{\mathrm{r}} \mathrm{c}(\mathrm{i})+\sum_{\mathrm{i}=2}^{\mathrm{r}} \mathrm{c}(\mathrm{i}) *(\mathrm{i}-1)$
leads to (3a) $k=\sum_{i=1}^{r} c(i)$ (because of $j<=n$) and
(3b) $\mathrm{j}=\sum_{\mathrm{i}=2}^{\mathrm{r}} \mathrm{c}(\mathrm{i}) *(\mathrm{i}-1)$
Replace $c(1)$ by $k-S(j)$ with $S(j)=\sum_{i=2}^{r} c(i)$, see (3a) (S depends on j, see(5)):
(4) $\mathrm{x}=(\mathrm{k}-\mathrm{S}(\mathrm{j})) *(\mathrm{n}+1)+\sum_{\mathrm{i}=2}^{\mathrm{r}} \mathrm{c}(\mathrm{i}) *(\mathrm{n}+\mathrm{i})$

The coefficients $c(i)$ must be selected such that they satisfy (3b).
We set $c(r)=a$ and, if $b>0, c(b+1)=1$ and else $c(i)=0$

$$
\text { with } \mathrm{a}=\left\lfloor\frac{\mathrm{j}}{\mathrm{r}-1}\right\rfloor \text { and } \mathrm{b}=\mathrm{j} \bmod (\mathrm{r}-1) .
$$

Result: $\sum_{\mathrm{i}=2}^{\mathrm{r}} \mathrm{c}(\mathrm{i}) *(\mathrm{i}-1)=(\mathrm{r}-1)^{*}\left\lfloor\frac{\mathrm{j}}{\mathrm{r}-1}\right\rfloor+\mathrm{j} \bmod (\mathrm{r}-1)=\mathrm{j}$.
Thus(3b) is satisfied and (2) is solved.
This leads to $\mathrm{S}(\mathrm{j})=\mathrm{a}$ if $\mathrm{b}=0$, or $\mathrm{S}(\mathrm{j})=\mathrm{a}+1$ otherwise. For both cases:
(5) $S(j)=\left\lceil\frac{\mathrm{j}}{\mathrm{r}-1}\right\rceil$ and
(6) $\mathrm{k} \geq \mathrm{S}(\mathrm{n})=\left\lceil\frac{\mathrm{n}}{\mathrm{r}-1}\right\rceil$ as $\mathrm{j}=\mathrm{n}$ must be included.

With this inequality, (2) has been solved such that all coefficients are non-negative.
Thus any $x \geq x_{\text {min }}=S(n) *(n+1)$ has such a linear combination.
On the other hand, (6) is necessary: We have set $c(r)$ to the greatest possible value. This way, we made $S(n)$ as small as possible because $c(r)$ is the "heaviest" coefficient with the factor $\mathrm{r}-1$.
Thus $\mathrm{y}=(\mathrm{S}(\mathrm{n})-1)^{*}(\mathrm{n}+1)+\mathrm{n}=\mathrm{x}_{\min }-1$ is the greatest value of x which does not satisfy the necessary condition (6).

Result: $\mathrm{F}(\mathrm{n}+1, \mathrm{n}+2, . ., \mathrm{n}+\mathrm{r})=(\mathbf{n}+\mathbf{1}) *\left\lceil\frac{\mathrm{n}}{\mathrm{r}-\mathbf{1}}\right\rceil-\mathbf{1}$

$$
=(n+1) * \operatorname{ceiling}\left(\frac{n}{r-1}\right)-1, r \geq 2
$$

