

Squares in a Square

- 1. Abstract
- 2. Index Terms
- 3. Squares and more
- 4. Couple of Squares
- 5. Solution of Optimum Squares in a Square
- 6. Summary
- A1 Graph of Remaining part
- A2 References
- A3 One example

Author:

Michael Bischoff, Parkstr. 49, D-89250 Senden

Mail: michael.h.bischoff@t-online.de

I. Abstract

Michael H. Bischoff ▶ retired engineer for Microwave Technology at the Technical University Berlin,
 Germany ▶ enthusiastic golf player and ▶ interested in physical and/ or mathematical problems
 ▶ sometime just playing around as in this case.

Squaring a square is the intention to fill up a larger square by a set of smaller squares, such that the remaining open area in the larger square becomes a minimum. Several authors (ref. [1 ... 3]) has given hints how to fill up a given square with edge length m by different rules.

For examples use all squares from edge length 1 to a given number n or use a minimum number of selected smaller squares to fill up the larger one by a nice tiling. Based on this simple geometrical task you will find in your free time a very nice series of paired squares (see ref. [1 ... 3] and attachment 3).

For a given variable k the remaining size/ area (not used by the smaller squares within the larger square with edge length m) will be a minimum. The simple equations which describe this behaviour are in strict contradiction to the huge squares. And more important there are always two neighboured solutions with the same minimum remaining part.

II. Index Terms

Square, tiling, paired solution

III. Squares and more

The tiling of a square with edge length m by several other smaller squares with edge length 1 to n should be the basis for this task. The following examples with four smaller squares with $n = 1 \dots 4$ to be integrated in the larger square with m = 6 is a good basis to explain the full task.

The area of all smaller squares has to be arranged in a larger square with area m² in such a way that the remaining part will be a minimum. The above mentioned example with m = 6 and n = 1 ... 4 leads to an outer square of m² = 36 to be filled by n² = 1² + 2² + 3² + 4² = 30. The remaining open part is in theory 6, but nevertheless it is not possible to reach this minimum filling due to the fact that the square with n = 3 or 4 could not be integrated. The remaining part (in white) will be larger and becomes in practice 22 or 15.

The following equation 3.1 describes the squaring of a square with a remaining part.

In fact it is more the task finding the correct sum of square numbers which will be equal with a certain remainder to another "outer" square number.

$$m^{2} = \sum_{i=1}^{n} i^{2} + remaining \ part = 1^{2} + 2^{2} + 3^{2} + \dots + n^{2} + remaining \ part$$

The first and only perfect square number will be reached for m = 70 and $n = 1 \dots 24$. In this case the remaining part will be zero (because $m^2 = 4900$ and the sum of $1^2 + 2^2 + 3^2 + \dots + 24^2$ become also 4900). Even if this number seems to be perfect – from calculation point of view – the geometric reality will be different. In practice it is not possible to fill up the larger square m = 70 with all smaller squares from $n = 1 \dots 24$. The best solution could be achieved if you leave the n = 7 square beside (see the example on front page).

For all squares until m = 2 337 238 and n = 1 ... 25 400 there will be no more a perfect solution of a larger square number equal to a sum of smaller square numbers.

IV. Pair of Square numbers

The calculation of the above mentioned equation is very simple and straight forward. Just prepare a table like beside one, use n as variable and calculate the necessary m as indicated in the following steps:

a.) calculate sum of n²
b.) square root out of sum
c.) round up this m value
d.) size of outer square m²
e.) and as final result calculate
the remaining part of the above
mentioned equation.

You will easily find the perfect solution for n = 24

And you will realize that from time to time surprisingly a pair of square number exist where the remaining part is a minimum (as indicated in green).

This minima could be numbered with an index from 1 (starting for the pair with n = 47/48) until k

The remaining part becomes in relationship to the larger square number smaller and smaller.

For example the remaining part of 400 for k = 20st square with an edge length m = 1 536 060 has a relative value of 1,6 x 10^{-10} , which is really a very small value.

Attachment 1 is showing a graph of the remaining open part of square numbers in a larger square number as function of used smaller square number n.

Sum of n Square root all n ² rounded Sum Outer Square m ² 15 1240 35.214 36 1296 16 1496 38.678 39 1521	Remainder 56
<u>15 1240 35.214 36 1296</u>	
	50
	25
10 130 30070 33 1011 17 1785 42.249 43 1849	64
18 2109 45.924 46 2116	7
19 2470 49.699 50 2500	30
20 2870 53.572 54 2916	46
21 3311 57.541 58 3364	53
22 3795 61.604 62 3844	49
23 4324 65.757 66 4356	32
24 4900 70.000 70 4900	0
25 5525 74.330 75 5625	100
45 31395 177.186 178 31684	289
46 33511 183.060 184 33856	345
47 188.997 189 35721	1
48 1. Dall 194.997 195 38025	1
49 40425 201.060 202 40804	379
50 42925 207.183 208 43264	339
	2724
189 2268315 1506.093 1507 2271049 100 2201445 4540.020 4540 2201364	2734
190 2304415 1518.030 1519 2307361 101 Database 1520.000 1520 2340000	2946
191 2340896 1529.999 1530 2340900 192 2. 2377760 1541.999 1542 2377764	4
132 £377700 1341.333 1342 2377704	3016
193 2415009 1554.030 1555 2418025 194 2452645 1566.092 1567 2455489	2844
134 2432043 1300.032 1307 2433483	2044
429 26409955 5139.062 5140 26419600	9645
430 26594855 5157.020 5158 26604964	10109
431 26780616 5174 999 5175 26780625	9
432 3. 26967240 5192.999 5193 26967249	9
433 27154729 5211.020 5212 27164944	10215
434 27343085 5229.062 5230 27352900	9815
765 149525115 12228.046 12229 149548441	23326
766 150111871 12252.015 12253 150136009	24138
767 50700160 12275.999 12276 150700176 769 4. 5120004 12200.000 12200.000 12200.000	16
76861289984 12299.999 12300 151290000	16
769 151881345 12324.015 12325 151905625	24280
770 152474245 12348.046 12349 152497801	23556
1107 572407205 22025 027 22026 572476	46081
1197 572407395 23925.037 23926 572453476 1198 573842599 23955.012 23956 573889936	46081
	25
1139 5. 75280200 23364.333 23383 373280223 1200 5. 76720200 24014.999 24015 576720225	25
1201 578162601 24045.012 24046 578210116	47515
1202 579607405 24075.037 24076 579653776	46371
5805 65222528355 255387.017 255388 65223030544	502189
5806 65256237991 255453.005 255454 65256746116	508125
5807 289959240 255519.000 255519 65289959361	121
5808 11. 323692104 255585.000 255585 65323692225	121
5809 65357436585 255651.005 255652 65357945104	508519
5810 65391192685 255717.017 255718 65391695524	502839

Table 1: remaining part as a function of edge length n and m.

V. Solution of "inner" Square numbers in an "outer" Square number

The following table is the result of above demonstrated simple calculation and sum up all the results with k as an index for the paired squares numbers with value n for the smaller inner square numbers and value m for the larger outer square number.

	OEIS					
	A065532	A231174**				
k	n* = n-1	n	m*	m	Remainder	delta m
1	47	48	189	195	1	6
2	191	192	1530	1542	4	12
3	431	432	5175	5193	9	18
4	767	768	12276	12300	16	24
5	1199	1200	23985	24015	25	30
6	1727	1728	41454	41490	36	36
7	2351	2352	65835	65877	49	42
8	3071	3072	98280	98328	64	48
9	3887	3888	139941	139995	81	54
10	4799	4800	191970	192030	100	60
11	5807	5808	255519	255585	121	66
12	6911	6912	331740	331812	144	72
13	8111	8112	421785	421863	169	78
14	9407	9408	526806	526890	196	84
15	10799	10800	647955	648045	225	90
16	12287	12288	786384	786480	256	96
17	13871	13872	943245	943347	289	102
18	15551	15552	1119690	1119798	324	108
19	17327	17328	1316871	1316985	361	114
20	19199	19200	1535940	1536060	400	120
21	21167	21168	1778049	1778175	441	126
22	23231	23232	2044350	2044482	484	132
23	25391	25392	2335995	2336133	529	138
24	27647	27648	2654136	2654280	576	144
25	29999	30000	2999925	3000075	625	150

Table 2: Overview of paired square numbers within a larger square number in accordance to equation (3.1)

Surprisingly you will find extremely simple relationship between the index k and all other figures.

I.	The missing remaining part is always	
	Remainder = k^2	(5.1)
II.	The outer square number m* and m has obviously a difference of 6k	
	delta m = 6 k	(5.2)
III.	The first outer square number has a value of m, the second one	
	m* = m – delta m	(5.3)

IV.	Per definition (or observation) the smaller inner squ	uare number has a value of	
	n* = n - 1		(5.4)
۷.	The remaining part is always a constant factor of n		
	n = 48 Remainder		
	and based on equation 5.1 n will be		
	n = 48 k²		(5.5)
VI.	The value of the outer square number m will be as	follow	
	with $m^2 = \sum n^2 + Remainder = \sum n^2 + k^2$		
	and $m^{*2} = \sum n^{*2}$ Remainder = $\sum n^{*2} + k^2$ w	ith $n^* = n - 1$ and $m^* = m - 6k$	
	$(m-6k)^2 = 1^2 + 2^2 + 3^2 + + (n-1)^2 + k^2$		
	$m^2 = 1^2 + 2^2 + 3^2 + + (n-1)^2 + n^2 + k^2$		
	the difference will be		
	$(m - 6k)^2 - m^2 = -n^2$ w	ith n = 48 k² follows	
	$m^2 - 12 \text{ km} + 36 \text{ k}^2 - m^2 = - (48 \text{ k}^2)^2$		
	m = $[(48 k^2)^2 + 36 k^2] / 12 k$		
	$m = (4^2 \ 12) \ k^3 + 3 \ k$		
	and therefore m will be easily calculated as follow		
	$m = 3 k (64 k^2 + 1)$		(5.6)
			(3.0)

With these simple equations you are in the position to find easily larger square numbers which will be the sum of smaller square numbers with a minimum remainder.

VI. Summary

The tiling of a larger square with an edge length m by a series of smaller squares from edge length 1 to n was the basis for an interesting search and the behaviour of square numbers.

Based on this simple geometrical task you will find an easy relationship for the k^{th} pair of square number which will lead to a minimum remainder of k^2

The calculation of square numbers leads to four series for n and n* as well as for m* and m as a function of an index k.

Two of them are already known in OEIS (see ref. 4 and 5), but are calculated on a different basis.

A1: Graph of Remaining part

Figure 1: Remainder for certain square number n and m as calculated by equation 3.1

Figure 2: Paired square numbers for n = 1199/1200 and the corresponding remaining part of 25. The red marked minima are the solution of equation 3.1 and represents always a pair n; n^* and m; m^*

A2: References

[1]	https://de.wikipedia.org/wiki/Quadratur_des_Quadrates https://en.wikipedia.org/wiki/Squaring_the_square	General introduction
[2]	Stuart Anderson: <u>Squared Squares</u> , 2014. http://www.squaring.net/sq/ss/ss.html	Detailed overview with historical information about different squares
[3]	Martin Gardner, Mathematical Carneval, 1975, Alfred A. Knopf Inc. – New York	Some hints from Martin Gardner
[4]	OEIS at www. Oeis.org A065532 is similar/ equal for n* = n-1	
[5]	OEIS at www. Oeis.org A231174 is similar for n	

A3: One additional example of Squares in a Square

Large outer Square withm = 117Smaller inner squares withn = 1 ... 34Remaining part, optimum4 area unitsRemaining part, best85 area units, without square n = 9, just 0,62% unused area size

square with n = 9 not used

