

Squares in a Square

1. Abstract
2. Index Terms
3. Squares and more
4. Couple of Squares
5. Solution of Optimum Squares in a Square
6. Summary

A1 Graph of Remaining part
A2 References
A3 One example

Author:
Michael Bischoff, Parkstr. 49, D-89250 Senden
Mail: michael.h.bischoff@t-online.de

I. Abstract

Michael H. Bischoff $>$ retired engineer for Microwave Technology at the Technical University Berlin, Germany enthusiastic golf player and interested in physical and/ or mathematical problems - sometime just playing around as in this case.

$\mathrm{m}=3$
$\mathrm{n}=1 . .2$
remainder $=4$

$\mathrm{m}=9$
$\mathrm{n}=1 \ldots 5$
remainder $=26$

$\mathrm{m}=15$
$\mathrm{n}=1$... 8
remainder $=21$ - free area in white!

Squaring a square is the intention to fill up a larger square by a set of smaller squares, such that the remaining open area in the larger square becomes a minimum. Several authors (ref. [1 ... 3]) has given hints how to fill up a given square with edge length m by different rules.

For examples use all squares from edge length 1 to a given number n or use a minimum number of selected smaller squares to fill up the larger one by a nice tiling. Based on this simple geometrical task you will find in your free time a very nice series of paired squares (see ref. [1 ... 3] and attachment 3).

For a given variable k the remaining size/ area (not used by the smaller squares within the larger square with edge length m) will be a minimum. The simple equations which describe this behaviour are in strict contradiction to the huge squares. And more important there are always two neighboured solutions with the same minimum remaining part.

II. Index Terms

Square, tiling, paired solution

III. Squares and more

The tiling of a square with edge length m by several other smaller squares with edge length 1 to n should be the basis for this task. The following examples with four smaller squares with $n=1 . . .4$ to be integrated in the larger square with $m=6$ is a good basis to explain the full task.

The area of all smaller squares has to be arranged in a larger square with area m^{2} in such a way that the remaining part will be a minimum. The above mentioned example with $\mathrm{m}=6$ and $\mathrm{n}=1$... 4 leads to an outer square of $m^{2}=36$ to be filled by $n^{2}=1^{2}+2^{2}+3^{2}+4^{2}=30$. The remaining open part is in theory 6 , but nevertheless it is not possible to reach this minimum filling due to the fact that the square with $n=3$ or 4 could not be integrated. The remaining part (in white) will be larger and becomes in practice 22 or 15.

The following equation 3.1 describes the squaring of a square with a remaining part.
In fact it is more the task finding the correct sum of square numbers which will be equal with a certain remainder to another "outer" square number.

$$
m^{2}=\sum_{i=1}^{n} i^{2}+\text { remaining part }=1^{2}+2^{2}+3^{2}+\cdots+n^{2}+\text { remaining part }
$$

The first and only perfect square number will be reached for $m=70$ and $n=1 \ldots 24$. In this case the remaining part will be zero (because $m^{2}=4900$ and the sum of $1^{2}+2^{2}+3^{2}+\ldots+24^{2}$ become also 4900). Even if this number seems to be perfect - from calculation point of view - the geometric reality will be different. In practice it is not possible to fill up the larger square $m=70$ with all smaller squares from $n=1 \ldots 24$. The best solution could be achieved if you leave the $n=7$ square beside (see the example on front page).

For all squares until $m=2337238$ and $n=1 \ldots 25400$ there will be no more a perfect solution of a larger square number equal to a sum of smaller square numbers.

IV. Pair of Square numbers

The calculation of the above mentioned equation is very simple and straight forward. Just prepare a table like beside one, use n as variable and calculate the necessary m as indicated in the following steps:
a.) calculate sum of n^{2}
b.) square root out of sum
c.) round up this m value
d.) size of outer square m^{2}
e.) and as final result calculate
the remaining part of the above mentioned equation.

You will easily find the perfect solution for $\mathrm{n}=24$

And you will realize that from time to time surprisingly a pair of square number exist where the remaining part is a minimum (as indicated in green).

This minima could be numbered with an index from 1 (starting for the pair with $n=47 / 48$) until k

The remaining part becomes in relationship to the larger square number smaller and smaller.

For example the remaining part of 400 for $k=20$ st square with an edge length $m=1536060$ has a relative value of $1,6 \times 10^{-10}$, which is really a very small value.

Attachment 1 is showing a graph of the remaining open part of square numbers in a larger square number as function of
 used smaller square number n .

Table 1: remaining part as a function of edge length n and m .

V. Solution of "inner" Square numbers in an "outer" Square number

The following table is the result of above demonstrated simple calculation and sum up all the results with k as an index for the paired squares numbers with value n for the smaller inner square numbers and value m for the larger outer square number.

Table 2: Overview of paired square numbers within a larger square number in accordance to equation (3.1)
Surprisingly you will find extremely simple relationship between the index k and all other figures.
I. The missing remaining part is always

$$
\begin{equation*}
\text { Remainder }=\mathrm{k}^{2} \tag{5.1}
\end{equation*}
$$

II. The outer square number m^{*} and m has obviously a difference of 6 k

$$
\begin{equation*}
\text { delta } m=6 k \tag{5.2}
\end{equation*}
$$

III. The first outer square number has a value of m, the second one

$$
\begin{equation*}
m^{*}=m-\text { delta } m \tag{5.3}
\end{equation*}
$$

IV. Per definition (or observation) the smaller inner square number has a value of

$$
\begin{equation*}
n^{*}=n-1 \tag{5.4}
\end{equation*}
$$

V. The remaining part is always a constant factor of n

$$
\text { n = } 48 \text { Remainder }
$$

and based on equation 5.1 n will be

$$
\begin{equation*}
\mathrm{n}=48 \mathrm{k}^{2} \tag{5.5}
\end{equation*}
$$

VI. The value of the outer square number m will be as follow

$$
\text { with } m^{2}=\sum n^{2}+\text { Remainder }=\sum n^{2}+k^{2}
$$

and $m^{* 2}=\sum n^{* 2}$ Remainder $=\sum n^{* 2}+k^{2} \quad$ with $n^{*}=n-1 \quad$ and $m^{*}=m-6 k$
$(m-6 k)^{2}=1^{2}+2^{2}+3^{2}+\ldots+(n-1)^{2}+k^{2}$
$m^{2}=1^{2}+2^{2}+3^{2}+\ldots+(n-1)^{2}+n^{2}+k^{2}$
the difference will be

$$
\begin{array}{ll}
(m-6 k)^{2}-m^{2}=-n^{2} & \text { with } n=48 k^{2} \text { follows } \\
m^{2}-12 k m+36 k^{2}-m^{2}=-\left(48 k^{2}\right)^{2} \\
m=\left[\left(48 k^{2}\right)^{2}+36 k^{2}\right] / 12 k & \\
m=\left(4^{2} 12\right) k^{3}+3 k &
\end{array}
$$

and therefore m will be easily calculated as follow

$$
\begin{equation*}
m=3 k\left(64 k^{2}+1\right) \tag{5.6}
\end{equation*}
$$

With these simple equations you are in the position to find easily larger square numbers which will be the sum of smaller square numbers with a minimum remainder.

VI. Summary

The tiling of a larger square with an edge length m by a series of smaller squares from edge length 1 to n was the basis for an interesting search and the behaviour of square numbers.

Based on this simple geometrical task you will find an easy relationship for the $k^{\text {th }}$ pair of square number which will lead to a minimum remainder of k^{2}

The calculation of square numbers leads to four series for n and $n *$ as well as for m * and m as a function of an index k.

Two of them are already known in OEIS (see ref. 4 and 5), but are calculated on a different basis.

A1: Graph of Remaining part

Figure 1: Remainder for certain square number n and m as calculated by equation 3.1

Figure 2: Paired square numbers for $n=1199 / 1200$ and the corresponding remaining part of 25.
The red marked minima are the solution of equation 3.1 and represents always a pair $n ; n^{*}$ and m; m*

A2: References

[1]	https://de.wikipedia.org/wiki/Quadratur des Quadrates https://en.wikipedia.org/wiki/Squaring the square	General introduction
[2]	Stuart Anderson: Squared Squares, 2014. http://www.squaring.net/sq/ss/ss.html	Detailed overview with historical information about different squares
[3]	Martin Gardner, Mathematical Carneval, 1975, Alfred A. Knopf Inc. - New York	Some hints from Martin Gardner
[4]	OEIS at www. Oeis.org A065532 is similar/ equal for n* $\mathrm{n}^{*} \mathrm{n}-1$	
[5]	OEIS at www. Oeis.org A231174 is similar for n	

A3: One additional example of Squares in a Square

Large outer Square with	$m=117$
Smaller inner squares with	$n=1 \ldots 34$
Remaining part, optimum	4 area units
Remaining part, best	85 area units, without square $n=9$, just $0,62 \%$ unused area size

square with $\mathrm{n}=9$ not used

