login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A286718 Triangle read by rows: T(n, k) is the Sheffer triangle ((1 - 3*x)^(-1/3), (-1/3)*log(1 - 3*x)). A generalized Stirling1 triangle. 13
1, 1, 1, 4, 5, 1, 28, 39, 12, 1, 280, 418, 159, 22, 1, 3640, 5714, 2485, 445, 35, 1, 58240, 95064, 45474, 9605, 1005, 51, 1, 1106560, 1864456, 959070, 227969, 28700, 1974, 70, 1, 24344320, 42124592, 22963996, 5974388, 859369, 72128, 3514, 92, 1, 608608000, 1077459120, 616224492, 172323696, 27458613, 2662569, 159978, 5814, 117, 1, 17041024000, 30777463360, 18331744896, 5441287980, 941164860, 102010545, 7141953, 322770, 9090, 145, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
This is a generalization of the unsigned Stirling1 triangle A132393.
In general the lower triangular Sheffer matrix ((1 - d*x)^(-a/d), (-1/d)*log(1 - d*x)) is called here |S1hat[d,a]|. The signed matrix S1hat[d,a] with elements (-1)^(n-k)*|S1hat[d,a]|(n, k) is the inverse of the generalized Stirling2 Sheffer matrix S2hat[d,a] with elements S2[d,a](n, k)/d^k, where S2[d,a] is Sheffer (exp(a*x), exp(d*x) - 1).
In the Bala link the signed S1hat[d,a] (with row scaled elements S1[d,a](n,k)/d^n where S1[d,a] is the inverse matrix of S2[d,a]) is denoted by s_{(d,0,a)}, and there the notion exponential Riordan array is used for Sheffer array.
In the Luschny link the elements of |S1hat[m,m-1]| are called Stirling-Frobenius cycle numbers SF-C with parameter m.
From Wolfdieter Lang, Aug 09 2017: (Start)
The general row polynomials R(d,a;n,x) = Sum_{k=0..n} T(d,a;n,k)*x^k of the Sheffer triangle |S1hat[d,a]| satisfy, as special polynomials of the Boas-Buck class (see the reference), the identity (we use the notation of Rainville, Theorem 50, p. 141, adapted to an exponential generating function)
(E_x - n*1)*R(d,a;n,x) = -n!*Sum_{k=0..n-1} d^k*(a*1 + d*beta(k)*E_x)*R(d,a;n-1-k,x)/(n-1-k)!, for n >= 0, with E_x = x*d/dx (Euler operator), and beta(k) = A002208(k+1)/A002209(k+1).
This entails a recurrence for the sequence of column k, for n > k >= 0: T(d,a;n,k) = (n!/(n - k))*Sum_{p=k..n-1} d^(n-1-p)*(a + d*k*beta(n-1-p))*T(d,a;p,k)/p!, with input T(d,a;k,k) = 1. For the present [d,a] = [3,1] case see the formula and example sections below. (End)
The inverse of the Sheffer triangular matrix S2[3,1] = A282629 is the Sheffer matrix S1[3,1] = (1/(1 + x)^(1/3), log(1 + x)/3) with rational elements S1[3,1](n, k) = (-1)^(n-m)*T(n, k)/3^n. - Wolfdieter Lang, Nov 15 2018
REFERENCES
Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
LINKS
Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
FORMULA
Recurrence: T(n, k) = T(n-1, k-1) + (3*n-2)*T(n-1, k), for n >= 1, k = 0..n, and T(n, -1) = 0, T(0, 0) = 1 and T(n, k) = 0 for n < k.
E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k (i.e., e.g.f. of the triangle) is (1 - 3*z)^{-(x+1)/3}.
E.g.f. of column k is (1 - 3*x)^(-1/3)*((-1/3)*log(1 - 3*x))^k/k!.
Recurrence for row polynomials is R(n, x) = (x+1)*R(n-1, x+3), with R(0, x) = 1.
Row polynomial R(n, x) = risefac(3,1;x,n) with the rising factorial
risefac(d,a;x,n) := Product_{j=0..n-1} (x + (a + j*d)). (For the signed case see the Bala link, eq. (16)).
T(n, k) = sigma^{(n)}_{n-k}(a_0,a_1,...,a_{n-1}) with the elementary symmetric functions with indeterminates a_j = 1 + 3*j.
T(n, k) = Sum_{j=0..n-k} binomial(n-j, k)*|S1|(n, n-j)*3^j, with the unsigned Stirling1 triangle |S1| = A132393.
Boas-Buck column recurrence (see a comment above): T(n, k) =
(n!/(n - k))*Sum_{p=k..n-1} 3^(n-1-p)*(1 + 3*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, with beta(k) = A002208(k+1)/A002209(k+1). See an example below. - Wolfdieter Lang, Aug 09 2017
EXAMPLE
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 ...
O: 1
1: 1 1
2: 4 5 1
3: 28 39 12 1
4: 280 418 159 22 1
5: 3640 5714 2485 445 35 1
6: 58240 95064 45474 9605 1005 51 1
7: 1106560 1864456 959070 227969 28700 1974 70 1
8: 24344320 42124592 22963996 5974388 859369 72128 3514 92 1
...
From Wolfdieter Lang, Aug 09 2017: (Start)
Recurrence: T(3, 1) = T(2, 0) + (3*3-2)*T(2, 1) = 4 + 7*5 = 39.
Boas-Buck recurrence for column k = 2 and n = 5:
T(5, 2) = (5!/3)*(3^2*(1 + 6*(3/8))*T(2,2)/2! + 3*(1 + 6*(5/12)*T(3, 2)/3! + (1 + 6*(1/2))* T(4, 2)/4!)) = (5!/3)*(9*(1 + 9/4)/2 + 3*(1 + 15/6)*12/6 + (1 + 3)*159/24) = 2485.
The beta sequence begins: {1/2, 5/12, 3/8, 251/720, 95/288, 19087/60480, ...}.
(End)
MATHEMATICA
T[n_ /; n >= 1, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + (3*n-2)* T[n-1, k]; T[_, -1] = 0; T[0, 0] = 1; T[n_, k_] /; n<k = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018 *)
CROSSREFS
S2[d,a] for [d,a] = [1,0], [2,1], [3,1], [3,2], [4,1] and [4,3] is A048993, A154537, A282629, A225466, A285061 and A225467, respectively.
S2hat[d,a] for these [d,a] values is A048993, A039755, A111577 (offset 0), A225468, A111578 (offset 0) and A225469, respectively.
|S1hat[d,a]| for [d,a] = [1,0], [2,1], [3,2], [4,1] and [4,3] is A132393, A028338, A225470, A290317 and A225471, respectively.
Column sequences for k = 0, 1: A007559, A024216.
Diagonal sequences: A000012, A000326(n+1), A024212(n+1), A024213(n+1).
Row sums: A008544. Alternating row sums: A000007.
Beta sequence: A002208(n+1)/A002209(n+1).
Sequence in context: A147724 A110519 A286796 * A204579 A113095 A157784
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, May 18 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 30 11:43 EDT 2024. Contains 372131 sequences. (Running on oeis4.)