The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284873 Array read by antidiagonals: T(n,k) = number of double palindromes of length n using a maximum of k different symbols. 8
1, 2, 1, 3, 4, 1, 4, 9, 8, 1, 5, 16, 21, 16, 1, 6, 25, 40, 57, 32, 1, 7, 36, 65, 136, 123, 52, 1, 8, 49, 96, 265, 304, 279, 100, 1, 9, 64, 133, 456, 605, 880, 549, 160, 1, 10, 81, 176, 721, 1056, 2125, 1768, 1209, 260, 1, 11, 100, 225, 1072, 1687, 4356, 4345, 4936, 2127, 424, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
A double palindrome is a concatenation of two palindromes.
Also, number of words of length n using a maximum of k different symbols that are rotations of their reversals.
The sequence A165135 (number of n-digit positive papaya numbers) is 9/10 of the value of column 10.
All rows are polynomials of degree 1 + floor(n/2). - Andrew Howroyd, Oct 10 2017
From Petros Hadjicostas, Oct 27 2017: (Start)
Following Kemp (1982), we note that the formula by A. Howroyd below is equivalent to r(n,k) = Sum_{d|n} phi(d)*T(n/d,k), where r(2d, k) = d*(k+1)*k^d and r(2d+1, k) = (2d+1)*k^(d+1). Inverting (according to the theory of Dirichlet convolutions) we get T(n,k) = Sum_{d|n} phi^{(-1)}(d)*r(n/d,k), where phi^{(-1)}(n) = A023900(n) is the Dirichlet inverse of Euler's totient function.
We can easily prove that Sum_{n>=1} r(n,k)*x^n = R(k,x) = k*x*(x+1)*(k*x+1)/(1-k*x^2)^2 (for each k>=1). We also have Sum_{n>=1} T(n,k)*x^n = Sum_{n>=1} Sum_{d|n} phi^{(-1)}(d)*r(n/d,k)*x^n. Letting m = n/d and noting that x^n = (x^d)^m, we can easily get the g.f. given in the formula section.
Note that r(n,1) = n, r(n,2) = A187272(n), r(n,3) = A187273(n), r(n,4) = A187274(n), and r(n,5) = A187275(n).
(End)
LINKS
Chuan Guo, J. Shallit, and A. M. Shur, On the Combinatorics of Palindromes and Antipalindromes, arXiv preprint arXiv:1503.09112 [cs.FL], 2015.
R. Kemp, On the number of words in the language {w in Sigma* | w = w^R }^2, Discrete Math., 40 (1982), 225-234.
FORMULA
T(n, k) = r(n, k) - Sum_{d|n, d<n} phi(n/d) * T(d, k) where r(2d, k) = d*(k+1)*k^d, r(2d+1, k) = (2d+1)*k^(d+1).
From Petros Hadjicostas, Oct 27 2017: (Start)
T(n,k) = Sum_{d|n} phi^{(-1)}(d)*r(n/d,k), where r(n,k) is given above and phi^{(-1)}(n) = A023900(n) is the Dirichlet inverse of Euler's totient function.
G.f.: For each k>=1, Sum_{n>=1} T(n,k)*x^n = Sum_{d>=1} phi^{(-1)}(d)*R(k,x^d), where R(k,x) = k*x*(x+1)*(k*x+1)/(1-k*x^2)^2.
(End)
From Richard L. Ollerton, May 07 2021: (Start)
T(n,k) = Sum_{i=1..n} phi^{(-1)}(n/gcd(n,i))*r(gcd(n,i),k)/phi(n/gcd(n,i)).
T(n,k) = Sum_{i=1..n} phi^{(-1)}(gcd(n,i))*r(n/gcd(n,i),k)/phi(n/gcd(n,i)).
r(n,k) = Sum_{i=1..n} T(gcd(n,i),k). (End)
EXAMPLE
Table starts:
1 2 3 4 5 6 7 8 9 10 ...
1 4 9 16 25 36 49 64 81 100 ...
1 8 21 40 65 96 133 176 225 280 ...
1 16 57 136 265 456 721 1072 1521 2080 ...
1 32 123 304 605 1056 1687 2528 3609 4960 ...
1 52 279 880 2125 4356 7987 13504 21465 32500 ...
1 100 549 1768 4345 9036 16765 28624 45873 69940 ...
1 160 1209 4936 14665 35736 75985 146224 260721 437680 ...
1 260 2127 9112 27965 69756 150955 294512 530937 899380 ...
1 424 4689 25216 93025 270936 670369 1471744 2948481 5494600 ...
From Petros Hadjicostas, Oct 27 2017: (Start)
We explain how to use the above formulae to find general expressions for some rows.
If p is an odd prime, then phi^{(-1)}(p) = 1-p. Since, also, phi^{(-1)}(1) = 1, we get T(p,k) = (1-p)*k+p*k^{(p+1)/2} for the p-th row above.
If m is a positive integer, then phi^{(-1)}(2^m) = -1, and so T(2^m,k) = 1+(k+1)*(2^{m-1}*k^{2^{m-1}}-1-Sum_{0<=s<=m-2} 2^s*k^{2^s}).
For example, if m=1, then T(2,k) = 1+(k+1)*(1*k-1-0) = k^2.
If m=2, then T(4,k) = 1+(k+1)*(2*k^2-1-k) = k*(2*k^2+k-2), which is the formula conjectured by C. Barker for sequence A187277 and verified by A. Howroyd.
(End)
MATHEMATICA
r[d_, k_]:=If[OddQ[d], d*k^((d + 1)/2), (d/2)*(k + 1)*k^(d/2)]; a[n_, k_]:= r[n, k] - Sum[If[d<n, EulerPhi[n/d] a[d, k], 0], {d, Divisors[n]}]; Table[a[k, n - k + 1], {n, 20}, {k, n}] // Flatten (* Indranil Ghosh, Apr 07 2017 *)
PROG
(PARI)
r(d, k)=if (d % 2 == 0, (d/2)*(k+1)*k^(d/2), d*k^((d+1)/2));
a(n, k) = r(n, k) - sumdiv(n, d, if (d<n, eulerphi(n/d)*a(d, k), 0));
for(n=1, 10, for(k=1, 10, print1( a(n, k), ", "); ); print(); );
(Python)
from sympy import totient, divisors
def r(d, k): return (d//2)*(k + 1)*k**(d//2) if d%2 == 0 else d*k**((d + 1)//2)
def a(n, k): return r(n, k) - sum([totient(n//d)*a(d, k) for d in divisors(n) if d<n])
for n in range(1, 21): print([a(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 07 2017
CROSSREFS
Columns 2-5 are A007055, A007056, A007057, A007058.
Rows 3-4 are A000567, A187277.
Sequence in context: A125103 A171275 A335312 * A107616 A055208 A051128
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 04 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 22:04 EDT 2024. Contains 373102 sequences. (Running on oeis4.)