The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A284343 Number of ways to write n as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and y <= z such that 2*x + y - z is either zero or a power of 8 (including 8^0 = 1). 1
1, 1, 2, 2, 1, 1, 4, 1, 1, 3, 1, 3, 2, 1, 3, 3, 2, 3, 5, 2, 3, 4, 6, 1, 3, 5, 1, 6, 1, 3, 7, 2, 2, 5, 6, 5, 6, 3, 6, 4, 1, 3, 4, 5, 4, 5, 7, 2, 3, 8, 6, 7, 3, 4, 8, 3, 2, 6, 3, 5, 7, 3, 8, 7, 2, 4, 10, 4, 4, 7, 9, 7, 2, 4, 2, 7, 3, 5, 11, 2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Conjecture: (i) For any c = 1,2,4, each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers and y <= z such that c*(2*x+y-z) is either zero or a power of eight (including 8^0 = 1).
(ii) Each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that P(x,y,z,w) is either zero or a power of four (including 4^0 = 1), whenever P(x,y,z,w) is among the polynomials 2*x-y, x+y-z, x-y-z, x+y-2*z, 2*x+y-z, 2*x-y-z, 2*x-2*y-z, x+2*y-3*z, 2*x+2*y-2*z, 2*x+2*y-4*z, 3*x-2*y-z, x+3*y-3*z, 2*x+3*y-3*z, 4*x+2*y-2*z, 8*x+2*y-2*z, 2*(x-y)+z-w, 4*(x-y)+2*(z-w).
Part (i) of the conjecture is stronger than the first part of Conjecture 4.4 in the linked JNT paper (see also A273432).
Modifying the proofs of Theorem 1.1 and Theorem 1.2(i) in the linked JNT paper slightly, we see that for any a = 1,4 and m = 4,5,6 we can write each n = 0,1,2,... as a*x^m + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that x is either zero or a power of two (including 2^0 = 1), and that for any b = 1,2 each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with x,y,z,w nonnegative integers such that b*(x-y) is either zero or a power of 4 (including 4^0 = 1).
Starts to differ from A273432 at n=197. - R. J. Mathar, May 25 2023
LINKS
Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017.
EXAMPLE
a(4) = 1 since 4 = 0^2 + 0^2 + 0^2 + 2^2 with 0 = 0 and 2*0 + 0 - 0 = 0.
a(5) = 1 since 5 = 1^2 + 0^2 + 2^2 + 0^2 with 0 < 2 and 2*1 + 0 - 2 = 0.
a(7) = 1 since 7 = 1^2 + 1^2 + 2^2 + 1^2 with 1 < 2 and 2*1 + 1 - 2 = 8^0.
a(40) = 1 since 40 = 4^2 + 2^2 + 2^2 + 4^2 with 2 = 2 and 2*4 + 2 - 2 = 8.
a(138) = 1 since 138 = 3^2 + 5^2 + 10^2 + 2^2 with 5 < 10 and 2*3 + 5 - 10 = 8^0.
a(1832) = 1 since 1832 = 4^2 + 30^2 + 30^2 + 4^2 with 30 = 30 and 2*4 + 30 - 30 = 8.
a(2976) = 1 since 2976 = 20^2 + 16^2 + 48^2 + 4^2 with 16 < 48 and 2*20 + 16 - 48 = 8.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
Pow[n_]:=Pow[n]=n==0||(n>0&&IntegerQ[Log[8, n]]);
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&Pow[2x+y-z], r=r+1], {x, 0, Sqrt[n]}, {y, 0, Sqrt[(n-x^2)/2]}, {z, y, Sqrt[n-x^2-y^2]}]; Print[n, " ", r], {n, 0, 80}]
CROSSREFS
Sequence in context: A357437 A078692 A273432 * A033151 A046079 A319700
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Mar 25 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 2 20:59 EDT 2024. Contains 373049 sequences. (Running on oeis4.)