The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283642 Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 678", based on the 5-celled von Neumann neighborhood. 4
1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971, 357913941, 715827883, 1431655765, 2863311531, 5726623061, 11453246123 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
Similar to A001045.
It is not difficult to prove that one has indeed a(n) = round(4*2^n/3) = A001045(n+2) for all n. The proof as well as the growth of the pattern is nearly identical to that of the toothpick sequence A139250. - M. F. Hasler, Feb 13 2020
The decimal representations of the n-th interval of elementary cellular automata rules 28 and 156 (see A266502 and A266508) generate this sequence. - Karl V. Keller, Jr., Sep 03 2021
LINKS
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
From Colin Barker, Mar 14 2017: (Start)
G.f.: (1 + 2*x) / ((1 + x)*(1 - 2*x)).
a(n) = (2^(n+2) - 1) / 3 for n even.
a(n) = (2^(n+2) + 1) / 3 for n odd.
a(n) = a(n-1) + 2*a(n-2) for n>1.
(End)
I.e., a(n) = A001045(n+2) = A154917(n+2) = A167167(n+2) = |A077925(n+1)| = A328284(n+5) = round(4*2^n/3), cf. comments. - M. F. Hasler, Feb 13 2020
E.g.f.: (4*exp(2*x) - exp(-x))/3. - Stefano Spezia, Feb 13 2020
a(n) = floor((4*2^n + 1)/3). - Karl V. Keller, Jr., Sep 03 2021
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 678; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i , 1, stages - 1}]
PROG
(Python) print([(4*2**n + 1)//3 for n in range(50)]) # Karl V. Keller, Jr., Sep 03 2021
CROSSREFS
Sequence in context: A077925 A001045 A152046 * A284426 A284547 A084230
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 12 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 12:26 EDT 2024. Contains 372600 sequences. (Running on oeis4.)