The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A282629 Sheffer triangle (exp(x), exp(3*x) - 1). Named S2[3,1]. 22

%I #72 Mar 14 2024 16:29:44

%S 1,1,3,1,15,9,1,63,108,27,1,255,945,594,81,1,1023,7380,8775,2835,243,

%T 1,4095,54729,109890,63180,12393,729,1,16383,395388,1263087,1151010,

%U 387828,51030,2187,1,65535,2816865,13817034,18752391,9658278,2133054,201204,6561,1,262143,19914660,146620935,285232185,210789621,69502860,10825650,767637,19683

%N Sheffer triangle (exp(x), exp(3*x) - 1). Named S2[3,1].

%C For Sheffer triangles (infinite lower triangular exponential convolution matrices) see the W. Lang link under A006232, with references).

%C The e.g.f. for the sequence of column m is (Sheffer property) exp(x)*(exp(3*x) - 1)^m/m!.

%C This is a generalization of the Sheffer triangle Stirling2(n, m) = A048993(n, m) denoted by (exp(x), exp(x)-1), which could be named S2[1,0].

%C The a-sequence for this Sheffer triangle has e.g.f. 3*x/log(1+x) and is 3*A006232(n)/ A006233(n) (Cauchy numbers of the first kind).

%C The z-sequence has e.g.f. (3/(log(1+x)))*(1 - 1/(1+x)^(1/3)) and is A284857(n) / A284858(n).

%C The main diagonal gives A000244.

%C The row sums give A284859. The alternating row sums give A284860.

%C The triangle appears in the o.g.f. G(n, x) of the sequence {(1 + 3*m)^n}_{m>=0}, as G(n, x) = Sum_{m=0..n} T(n, m)*m!*x^m/(1-x)^(m+1), n >= 0. Hence the corresponding e.g.f. is, by the linear inverse Laplace transform, E(n, t) = Sum_{m >=0}(1 + 3*m)^n t^m/m! = exp(t)*Sum_{m=0..n} T(n, m)*t^m.

%C The corresponding Euler triangle with reversed rows is rEu(n, k) = Sum_{m=0..k} (-1)^(k-m)*binomial(n-m, k-m)*T(n, k)*k!, 0 <= k <= n. This is A225117 with row reversion.

%C The first column k sequences divided by 3^k are A000012, A002450 (with a leading 0), A016223, A021874. For the e.g.f.s and o.g.f.s see below. - _Wolfdieter Lang_, Apr 09 2017

%C From _Wolfdieter Lang_, Aug 09 2017: (Start)

%C The general row polynomials R(d,a;n,x) = Sum_{k=0..n} T(d,a;n,m)*x^m of the Sheffer triangle S2[d,a] satisfy, as special polynomials of the Boas-Buck class, the identity (see the reference, and we use the notation of Rainville, Theorem 50, p. 141, adapted to an exponential generating function)

%C (E_x - n*1)*R(d,a;n,x) = - n*a*R(d,a;n-1,x) - Sum_{k=0..n-1} binomial(n, k+1)*(-d)^(k+1)*Bernoulli(k+1)*E_x*R(d,a;n-1-k,x), with E_x = x*d/dx (Euler operator).

%C This entails a recurrence for the sequence of column m, for n > m:

%C T(d,a;n,m) = (1/(n - m))*[(n/2)*(2*a + d*m)*T(d,a;n-1,m) + m*Sum_{p=m..n-2} binomial(n,p)(-d)^(n-p)*Bernoulli(n-p)*T(d,a;p,m)], with input T(d,a;n,n) = d^n. For the present [d,a] = [3,1] case see the formula and example sections below. - _Wolfdieter Lang_, Aug 09 2017 (End)

%C The inverse of this triangular Sheffer matrix S2[3,1] is S1[3,1] with rational elements S1[3,1](n, k) = (-1)^(n-k)*A286718(n, k)/3^k. - _Wolfdieter Lang_, Nov 15 2018

%C Named after the American mathematician Isador Mitchell Sheffer (1901-1992). - _Amiram Eldar_, Jun 19 2021

%D Ralph P. Boas, Jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).

%D Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.

%H Michael De Vlieger, <a href="/A282629/b282629.txt">Table of n, a(n) for n = 0..11475</a>, rows n = 0..150, flattened.

%H Paweł Hitczenko, <a href="https://arxiv.org/abs/2403.03422">A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality</a>, arXiv:2403.03422 [math.CO], 2024. See p. 9.

%H Wolfdieter Lang, <a href="http://arXiv.org/abs/1707.04451">On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers</a>, arXiv:math/1707.04451 [math.NT], July 2017.

%H Wolfdieter Lang, <a href="https://arxiv.org/abs/1708.01421">On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles</a>, arXiv:1708.01421 [math.NT], August 2017.

%F A nontrivial recurrence for the column m=0 entries T(n, 0) = 1 from the z-sequence given above: T(n,0) = n*Sum_{j=0..n-1} z(j)*T(n-1,j), n >= 1, T(0, 0) = 1.

%F Recurrence for column m >= 1 entries from the a-sequence given above: T(n, m) = (n/m)*Sum_{j=0..n-m} binomial(m-1+j, m-1)*a(j)*T(n-1, m-1+j), m >= 1.

%F Recurrence for row polynomials R(n, x) (Meixner type): R(n, x) = ((3*x+1) + 3*x*d_x)*R(n-1, x), with differentiation d_x, for n >= 1, with input R(0, x) = 1.

%F T(n, m) = Sum_{k=0..m} binomial(m,k)*(-1)^(k-m)*(1 + 3*k)^n/m!, 0 <= m <= n.

%F E.g.f. of triangle: exp(z)*exp(x*(exp(3*z)-1)) (Sheffer type).

%F E.g.f. for sequence of column m is exp(x)*((exp(3*x) - 1)^m)/m! (Sheffer property).

%F From _Wolfdieter Lang_, Apr 09 2017: (Start)

%F Standard three-term recurrence: T(n, m) = 0 if n < m, T(n,-1) = 0, T(0, 0) = 1, T(n, m) = 3*T(n-1, m-1) + (1+3*m)*T(n-1, m) for n >= 1. From the T(n, m) formula. Compare with the recurrence of S2[3,2] given in A225466.

%F The o.g.f. for sequence of column m is 3^m*x^m/Product_{j=0..m} (1 - (1+3*j)*x). (End)

%F In terms of Stirling2 = A048993: T(n, m) = Sum_{k=0..n} binomial(n, k)* 3^k*Stirling2(k, m), 0 <= m <= n. - _Wolfdieter Lang_, Apr 13 2017

%F Boas-Buck recurrence for column sequence m: T(n, m) = (1/(n - m))*[(n/2)*(2 + 3*m)*T(n-1, m) + m*Sum_{p=m..n-2} binomial(n,p)(-3)^(n-p)*Bernoulli(n-p)*T(p, m)], for n > m >= 0, with input T(m, m) = 3^m. See a comment above. - _Wolfdieter Lang_, Aug 09 2017

%e The triangle T(n, m) begins:

%e n\m 0 1 2 3 4 5 6 7 8 9

%e 0: 1

%e 1: 1 3

%e 2: 1 15 9

%e 3: 1 63 108 27

%e 4: 1 255 945 594 81

%e 5: 1 1023 7380 8775 2835 243

%e 6: 1 4095 54729 109890 63180 12393 729

%e 7: 1 16383 395388 1263087 1151010 387828 51030 2187

%e 8: 1 65535 2816865 13817034 18752391 9658278 2133054 201204 6561

%e 9: 1 262143 19914660 146620935 285232185 210789621 69502860 10825650 767637 19683

%e ...

%e ------------------------------------------------------------------------------------

%e Nontrivial recurrence for m=0 column from z-sequence:T(4,0) = 4*(1*1 + 63*(-1/6) + 108*(11/54) + 27*(-49/108)) = 1.

%e Recurrence for m=2 column from a-sequence: T(4, 2) = (4/2)*(1*63*3 + 2*108*(3/2) + 3*27*(-3/6)) = 945.

%e Recurrence for row polynomial R(3, x) (Meixner type): ((3*x + 1) + 3*x*d_x)*(1 + 15*x + 9*x^2) = 1 + 63*x + 108*x^2 + 27*x^3.

%e E.g.f. and o.g.f. of n = 1 powers {(1 + 3*m)^1}_{m>=0} A016777: E(1, x) = exp(x) * (T(1, 0) + T(1, 1)*x) = exp(x)*(1+3*x). O.g.f.: G(1, x) = T(1, 0)*0!/(1-x) + T(1, 1)*1!*x/(1-x)^2 = (1+2*x)/(1-x)^2.

%e Boas-Buck recurrence for column m = 2, and n = 4: T(4, 2) =(1/2)*[2*(2 + 3*2)*T(3, 2) + 2*6*(-3)^2*bernoulli(2)*T(2, 2))] = (1/2)*(16*108 + 12*9*(1/6)*9) = 945. - _Wolfdieter Lang_, Aug 09 2017

%t Table[Sum[Binomial[m, k] (-1)^(k - m) (1 + 3 k)^n/m!, {k, 0, m}], {n, 0, 9}, {m, 0, n}] // Flatten (* _Michael De Vlieger_, Apr 08 2017 *)

%o (PARI) T(n, m) = sum(k=0, m, binomial(m, k) * (-1)^(k - m) * (1 + 3*k)^n/m!);

%o for(n=0, 9, for(m=0, n, print1(T(n, m),", ");); print();) \\ _Indranil Ghosh_, Apr 08 2017

%Y Cf. A000012, A000244, A006232/A006233, A016777, A024036, A111577, A225117, A225466, A284857, A284858, A284859, A284860, A284861, A286718.

%K nonn,easy,tabl

%O 0,3

%A _Wolfdieter Lang_, Apr 03 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 06:43 EDT 2024. Contains 372528 sequences. (Running on oeis4.)