The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A281854 Irregular triangle read by rows. Row n gives the orders of the cyclic groups appearing as factors in the direct product decomposition of the abelian non-cyclic multiplicative groups of integers modulo A033949(n). 4
2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 8, 2, 5, 2, 2, 4, 3, 2, 3, 2, 2, 4, 3, 2, 4, 2, 2, 3, 2, 2, 5, 2, 2, 4, 3, 2, 4, 2, 2, 16, 2, 4, 3, 2, 5, 4, 2, 3, 2, 2, 2, 9, 2, 2, 4, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The length of row n is given in A281855.
The multiplicative group of integers modulo n is written as (Z/(n Z))^x (in ring notation, group of units) isomorphic to Gal(Q(zeta(n))/Q) with zeta(n) = exp(2*Pi*I/n). The present table gives in row n the factors of the direct product decomposition of the non-cyclic group of integers modulo A033949(n) (in nonincreasing order). The cyclic group of order n is C_n. Note that only C-factors of prime power orders are used; for example C_6 has the decomposition C_3 x C_2, etc. C_n is decomposed whenever n has relatively prime factors like in C_30 = C_15 x C_2 = C_5 x C_3 x C_2. In the Wikipedia table partial decompositions appear.
The row products phi(A033949(n)) are given as 4*A281856(n), n >= 1, with phi(n) = A000010(n).
See also the W. Lang links for these groups.
LINKS
Wolfdieter Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, Table 7 (in row n = 80 it should read Z_4^2 x Z_2), arXiv:1210.1018 [math.GR], 2012.
Wikipedia, Multiplicative group of integers modulo n . Compare with the Table at the end.
EXAMPLE
The triangle T(n, k) begins (N = A033949(n)):
n, N, phi(N)\ k 1 2 3 4 ...
1, 8, 4: 2 2
2, 12, 4: 2 2
3, 15, 8: 4 2
4, 16, 8: 4 2
5, 20, 8: 4 2
6, 21, 12: 3 2 2
7, 24, 8: 2 2 2
8, 28, 12: 3 2 2
9, 30, 8: 4 2
10, 32, 16: 8 2
11, 33, 20: 5 2 2
12, 35, 24: 4 3 2
13, 36, 12: 3 2 2
14, 39, 24: 4 3 2
15, 40, 16: 4 2 2
16, 42, 12: 3 2 2
17, 44, 20: 5 2 2
18, 45, 24: 4 3 2
19, 48, 16: 4 2 2
20, 51, 32: 16 2
21, 52, 24: 4 3 2
22, 55, 40: 5 4 2
23, 56, 24: 3 2 2 2
24, 57, 36: 9 2 2
25, 60, 16: 4 2 2
...
n = 6, A033949(6) = N = 21, phi(21) = 12, group (Z/21 n)^x decomposition C_3 x C_2 x C_2 (in the Wikipedia Table C_2 x C_6). The smallest positive reduced system modulo 21 has the primes {2, 5, 11, 13, 17, 19} with cycle lengths {6, 6, 6, 2, 6, 6}, respectively. As generators of the group one can take <2, 13>.
(In the Wikipedia Table <2, 20> is used).
----------------------------------------------
From Wolfdieter Lang, Feb 04 2017: (Start)
n = 32, A033949(32) = N = 70, phi(70) = 24.
Cycle types (multiplicity as subscript): 12_7, 6_4, 4_2, 3_1, 2_2 (a total of 16 cycles). Cycle structure: 12_2, 6_2 (all other cycles are sub-cycles).
The first 12-cycle obtained from the powers of, say 3, contains also the 12-cycles from 17 and 47. It also contains the 4-cycle from 13, the 3-cycle from 11 and the 2-cycle from 29.
The second 12-cycle from the powers of, say, 23 contains also the 12-cycles from 37, 53 and 67, as well as the 4-cycle from 43.
The first 6-cycle from the powers of, say, 19 contains also the 6-cycle of 59 as well as the 2-cycle from 41.
The second 6-cycle from the powers of, say, 31 contains also the 6-cycle from 61.
The group is C_6 x C_4 = (C_2 x C_3) x C_4 = C_4 X C_3 x C_2 (see the W. Lang link, Table 7)
The cycle graph of C_4 X C_3 x C_2 is the 7th entry of Figure 4 of this link.
(End)
CROSSREFS
Sequence in context: A351411 A084718 A154851 * A335385 A037445 A318307
KEYWORD
nonn,tabf
AUTHOR
Wolfdieter Lang, Feb 02 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 19:45 EDT 2024. Contains 372703 sequences. (Running on oeis4.)