The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275083 Positive integers congruent to 0 or 1 modulo 4 that cannot be written as x^3 + y^2 + z^2 with x,y,z nonnegative integers. 3
120, 312, 813, 2136, 2680, 3224, 4404, 5340, 6420, 10060, 11320, 11824, 14008, 15856, 26544, 28804, 34392, 47984 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Conjecture: (i) The sequence has totally 18 terms as listed.
(ii) For each r = 2,3 there are infinitely many positive integers n == r (mod 4) not in the form x^3 + y^2 + z^2 with x,y,z nonnegative integers.
Our computation indicates that the sequence has no other terms below 10^6.
Let d be 2 or 6. Clearly, n-d is congruent to 0 or 1 modulo 4 if n is congruent to 2 or 3 modulo 4. So part (i) of the conjecture essentially implies that for each n = 0,1,2,... either n or n-d can be written as x^3 + y^2 + z^2 with x,y,z nonnegative integers.
LINKS
EXAMPLE
a(1) = 120 since all those positive integers congruent to 0 or 1 modulo 4 and smaller than 120 can be written as x^3 + y^2 + z^2 with x,y,z nonnegative integers but 120 (divisible by 4) cannot be written in this way.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
n=0; Do[If[Mod[m, 4]>1, Goto[aa]]; Do[If[SQ[m-x^3-y^2], Goto[aa]], {x, 0, m^(1/3)}, {y, 0, Sqrt[(m-x^3)/2]}]; n=n+1; Print[n, " ", m]; Label[aa]; Continue, {m, 1, 50000}]
CROSSREFS
Sequence in context: A121898 A048190 A090391 * A098114 A135805 A327912
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jul 15 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 03:20 EDT 2024. Contains 372666 sequences. (Running on oeis4.)