login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271703 Triangle read by rows: the unsigned Lah numbers T(n, k) = binomial(n-1, k-1)*n!/k! if n > 0 and k > 0, T(n, 0) = 0^n and otherwise 0, for n >= 0 and 0 <= k <= n. 34
1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 24, 36, 12, 1, 0, 120, 240, 120, 20, 1, 0, 720, 1800, 1200, 300, 30, 1, 0, 5040, 15120, 12600, 4200, 630, 42, 1, 0, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, 0, 362880, 1451520, 1693440, 846720, 211680, 28224, 2016, 72, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
The Lah numbers can be seen as the case m=1 of the family of triangles T_{m}(n,k) = T_{m}(n-1,k-1)+(k^m+(n-1)^m)*T_{m}(n-1,k) (see the link 'Partition transform').
This is the Sheffer triangle (lower triangular infinite matrix) (1, x/(1-x)), an element of the Jabotinsky subgroup of the Sheffer group. - Wolfdieter Lang, Jun 12 2017
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., pp. 312, 552.
I. Lah, Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik, Mitt.-Bl. Math. Statistik, 7:203-213, 1955.
T. Mansour, M. Schork, Commutation Relations, Normal Ordering, and Stirling Numbers, CRC Press, 2016
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales, Two Approaches to Normal Order Coefficients. Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
M. F. Hasler and P. Luschny, Formulas for A271703, OEIS Wiki, Aug. 2017.
S. A. Joni, G.-C. Rota, and B. Sagan, From sets to functions: Three elementary examples, Discrete Mathematics, Volume 37, Issues 2-3, 1981, 193-202.
Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
D. E. Knuth, Convolution polynomials, Mathematica J. 2.1 (1992), no. 4, 67-78.
Peter Luschny, Lah numbers
Peter Luschny, Partition transform
Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See. p. 18.
Piotr Miska and Maciej Ulas, On some properties of the number of permutations being products of pairwise disjoint d-cycles, arXiv:1904.03395 [math.NT], 2019.
Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
FORMULA
For a collection of formulas see the 'Lah numbers' link.
T(n, k) = A097805(n, k)*n!/k! = (-1)^k*P_{n, k}(1,1,1,...) where P_{n, k}(s) is the partition transform of s.
T(n, k) = coeff(n! * P(n), x, k) with P(n) = (1/n)*(Sum_{k=0..n-1}(x(n-k)*P(k))), for n >= 1 and P(n=0) = 1, with x(n) = n*x. See A036039. - Johannes W. Meijer, Jul 08 2016
From Wolfdieter Lang, Jun 12 2017: (Start)
E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k (that is egf of the triangle) is exp(x*t/(1-t)) (a Sheffer triangle of the Jabotinsky type).
E.g.f. column k: (t/(1-t))^k/k!.
Three term recurrence: T(n, k) = T(n-1, k-1) + (n-1+k)*T(n, k-1), n >= 1, k = 0..n, with T(0, 0) =1, T(n, -1) = 0, T(n, k) = 0 if n < k.
T(n, k) = binomial(n, k)*fallfac(x=n-1, n-k), with fallfac(x, n) = Product_{j=0..(n-1)} (x - j), for n >= 1, and 0 for n = 0.
risefac(x, n) = Sum_{k=0..n} T(n, k)*fallfac(k), with risefac(x, n) = Product_{j=0..(n-1)} (x + j), for n >= 1, and 0 for n = 0.
See Graham et al., exercise 31, p. 312, solution p. 552. (End)
Formally, let f_n(x) = Sum_{k>n} (k-1)!*x^k; then f_n(x) = Sum_{k=0..n} T(n, k)* x^(n+k)*f_0^((k))(x), where ^((k)) stands for the k-th derivative. - Luc Rousseau, Dec 27 2020
T(n, k) = Sum_{j=k..n} A354795(n, j)*A360177(j, k). - Mélika Tebni, Feb 02 2023
T(n, k) = binomial(n, k)*(n-1)!/(k-1)! for n, k > 0. - Chai Wah Wu, Nov 30 2023
EXAMPLE
As a rectangular array (diagonals of the triangle):
1, 1, 1, 1, 1, 1, ... A000012
0, 2, 6, 12, 20, 30, ... A002378
0, 6, 36, 120, 300, 630, ... A083374
0, 24, 240, 1200, 4200, 11760, ... A253285
0, 120, 1800, 12600, 58800, 211680, ...
0, 720, 15120, 141120, 846720, 3810240, ...
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 0 1
2: 0 2 1
3: 0 6 6 1
4: 0 24 36 12 1
5: 0 120 240 120 20 1
6: 0 720 1800 1200 300 30 1
7: 0 5040 15120 12600 4200 630 42 1
8: 0 40320 141120 141120 58800 11760 1176 56 1
9: 0 362880 1451520 1693440 846720 211680 28224 2016 72 1
10: 0 3628800 16329600 21772800 12700800 3810240 635040 60480 3240 90 1
... - Wolfdieter Lang, Jun 12 2017
MAPLE
T := (n, k) -> `if`(n=k, 1, binomial(n-1, k-1)*n!/k!):
seq(seq(T(n, k), k=0..n), n=0..9);
MATHEMATICA
T[n_, k_] := Binomial[n, k]*FactorialPower[n-1, n-k];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
PROG
(Sage)
@cached_function
def T(n, k):
if k<0 : return 0
if k==n: return 1
return T(n-1, k-1) + (k+n-1)*T(n-1, k)
for n in (0..8): print([T(n, k) for k in (0..n)])
CROSSREFS
Variants: A008297 the main entry for these numbers, A105278, A111596 (signed).
A000262 (row sums). Largest number of the n-th row in A002868.
Sequence in context: A352369 A111184 A111596 * A276922 A129062 A281662
KEYWORD
nonn,easy,tabl
AUTHOR
Peter Luschny, Apr 14 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 27 21:44 EDT 2024. Contains 372020 sequences. (Running on oeis4.)