The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269750 Triangle read by rows: row n gives coefficients of Schur polynomial Omega(n) in order of decreasing powers of x. 6
1, 1, 0, 1, 1, 1, 1, 2, 4, 1, 1, 3, 8, 9, 2, 1, 4, 13, 23, 25, 3, 1, 5, 19, 44, 72, 69, 5, 1, 6, 26, 73, 152, 222, 203, 8, 1, 7, 34, 111, 275, 511, 703, 623, 13, 1, 8, 43, 159, 452, 997, 1725, 2272, 1990, 21, 1, 9, 53, 218, 695, 1754, 3572, 5854, 7510, 6559, 34, 1, 10, 64, 289, 1017, 2870, 6645, 12717, 20065, 25325, 22161, 55 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Row n contains n+1 terms.
LINKS
Gheorghe Coserea, Rows n = 0..200, flattened
Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757 [math.RA], 2015.
FORMULA
G.f. A(x) = Sum_{n>=0} P_n(t)*x^n = 2*(1-x)/(-2*x^2 + (t-2)*(x-1) + t*(1-x)*sqrt(1-4*x)), where P_n(t) = Sum_{k=0..n} T(n,k)*t^(n-k) (see Misseldine link); equivalently, the g.f. can be rewritten as y^2*(y^2 - y + 1)/(y^4 - y^3 + 2*y - 1 - t*y*(y - 1)*(y^2 - y + 1)), where y=A000108(x). - Gheorghe Coserea, Sep 10 2018
EXAMPLE
A(x) = 1 + t*x + (t^2 + t + 1)*x^2 + (t^3 + 2*t^2 + 4*t + 1)*x^3 + ...
Triangle begins:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]
[0] 1;
[1] 1, 0;
[2] 1, 1, 1;
[3] 1, 2, 4, 1;
[4] 1, 3, 8, 9, 2;
[5] 1, 4, 13, 23, 25, 3;
[6] 1, 5, 19, 44, 72, 69, 5;
[7] 1, 6, 26, 73, 152, 222, 203, 8;
[8] 1, 7, 34, 111, 275, 511, 703, 623, 13;
[9] 1, 8, 43, 159, 452, 997, 1725, 2272, 1990, 21;
[10]...
MATHEMATICA
c[k_] := Binomial[2k, k]/(k+1);
om[0] = 1; om[1] = x; om[n_] := om[n] = x om[n-1] + Sum[(c[k-1] x + 1) om[n - k], {k, 2, n}];
row[n_] := CoefficientList[om[n], x] // Reverse;
Table[row[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Sep 06 2018 *)
PROG
(PARI)
seq(N, t='t) = {
my(a=vector(N), c(k)=binomial(2*k, k)/(k+1)); a[1]=1; a[2]=t;
for (n = 2, N-1,
a[n+1] = t*a[n] + sum(k = 2, n, (c(k-1)*t+1)*a[n+1-k]));
return(a);
};
concat(apply(Vec, seq(12)))
(PARI)
N=12; x='x + O('x^N); t='t;
concat(apply(Vec, Vec(2*(1-x)/(-2*x^2 + (t-2)*(x-1) + t*(1-x)*sqrt(1-4*x)))))
\\ Gheorghe Coserea, Sep 10 2018
CROSSREFS
Cf. A000040, A000045(n-1)=P_n(0), A000108, A270789.
For odd prime p, evaluating the polynomial P_n(t) at t=A000005(p-1) gives the number of Schur rings over Z_{p^n}. For p=3,5,7 we have t=2,3,4 and the associated sequences A270785(n) = P_n(2), A270786(n) = P_n(3), A270787(n) = P_n(4).
Sequence in context: A117136 A362142 A139227 * A292495 A065626 A201758
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Mar 22 2016
EXTENSIONS
More terms from Gheorghe Coserea, Mar 24 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 09:36 EDT 2024. Contains 372710 sequences. (Running on oeis4.)