The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A268300 G.f. satisfies: -1 = Product_{n>=1} (1-x^n) * (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)), where g.f. A(x) = Sum_{n>=0} a(n)*2*(x/4)^n. 6
1, 7, 119, 2118, 42523, 914922, 20745494, 487390092, 11764545555, 289962708802, 7267069560834, 184626340341588, 4744080078088734, 123075608359376932, 3219261610951795084, 84806249132678044440, 2248017950109054256899, 59917503707743905031346, 1604813748929693765997450, 43170742498490205711682564, 1165893490887496323343495146, 31598783791475055433157814444, 859179326846115018832395000820 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The g.f. utilizes the Jacobi Triple Product: Product_{n>=1} (1-x^n)*(1 - x^n/a)*(1 - x^(n-1)*a) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)/2) * a^n.
LINKS
FORMULA
Given g.f. A(x) = Sum_{n>=0} a(n) * 2*(x/4)^n, then g.f. also satisfies:
(1) -1 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)/2) * A(x)^n,
(2) A(x) = 1 / Product_{n>=1} (1-x^n) * (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)),
(3) A(x) = 1 / Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
(4) x = Sum_{n>=1} A268299(n) * x^n / A(x)^n.
a(n) is odd iff n = 2^k for k>=0 or n=0 (conjecture).
a(n) ~ c * d^n / n^(3/2), where d = 29.10159109069361717048796233905065832... and c = 0.57417747020768285925989822148605305... . - Vaclav Kotesovec, Mar 02 2016
Formula (2) can be rewritten as the functional equation y = 1 / (QPochhammer(x) * QPochhammer(y,x) / (1-y) * QPochhammer(1/(x*y),x) / (1 - 1/(x*y))). - Vaclav Kotesovec, Jan 19 2024
EXAMPLE
G.f.: A(x) = 2 + 7*2*x/4 + 119*2*x^2/4^2 + 2118*2*x^3/4^3 + 42523*2*x^4/4^4 + 914922*2*x^5/4^5 + 20745494*2*x^6/4^6 + 487390092*2*x^7/4^7 + 11764545555*2*x^8/4^8 + 289962708802*2*x^9/4^9 + 7267069560834*2*x^10/4^10 +...
where g.f. A(x) satisfies the Jacobi Triple Product:
-1 = (1-x)*(1-x/A(x))*(1-A(x)) * (1-x^2)*(1-x^2/A(x))*(1-x*A(x)) * (1-x^3)*(1-x^3/A(x))*(1-x^2*A(x)) * (1-x^4)*(1-x^4/A(x))*(1-x^3*A(x)) * (1-x^5)*(1-x^5/A(x))*(1-x^4*A(x)) * (1-x^6)*(1-x^6/A(x))*(1-x^5*A(x)) *...
also
A(x) = 1/((1-x)*(1-x*A(x))*(1-1/A(x)) * (1-x^2)*(1-x^2*A(x))*(1-x/A(x)) * (1-x^3)*(1-x^3*A(x))*(1-x^2/A(x)) * (1-x^4)*(1-x^4*A(x))*(1-x^3/A(x)) * (1-x^5)*(1-x^5*A(x))*(1-x^4/A(x)) * (1-x^6)*(1-x^6*A(x))*(1-x^5/A(x)) *...).
RELATED SERIES.
1/A(x) = 1/2 - 7/2*x/4 - 70/2*x^2/4^2 - 795/2*x^3/4^3 - 13802/2*x^4/4^4 - 277782/2*x^5/4^5 - 6093708/2*x^6/4^6 - 139376659/2*x^7/4^7 - 3297234754/2*x^8/4^8 - 79988099074/2*x^9/4^9 +...+ A268301(n)/2*x^n/4^n +...
Series_Reversion( x/A(x) ) = 2*x + 7*x^2 + 84*x^3 + 1240*x^4 + 20942*x^5 + 382344*x^6 + 7354688*x^7 + 146810440*x^8 + 3012778758*x^9 + 63167322872*x^10 +...+ A268299(n)*x^n +..., an integer series.
Let J(x) = Sum_{n>=1} x^(n*(n-1)/2) * (A(x)^n + 1/A(x)^(n-1)),
then J(x) is an integer series:
J(x) = 3 + 8*x + 28*x^2 + 144*x^3 + 736*x^4 + 4024*x^5 + 22912*x^6 + 134784*x^7 + 813476*x^8 + 5010904*x^9 + 31379808*x^10 +..+ A268302(n)*x^n +...
and J(x) = Product_{n>=1} (1-x^n) * (1 + x^n/A(x)) * (1 + x^(n-1)*A(x)).
Conjecture: Product_{n>=1} (1-x^n) * (1 + k*x^n/A(x)) * (1 + k*x^(n-1)*A(x)) yields an integer series for all integer k.
MATHEMATICA
(* Calculation of constants {d, c}: *) {4/r, 1/(2*Sqrt[2*Pi]) * Sqrt[(r*s^4* Log[r]*(((-1 + s)*(-1 + r*s) * QPolyGamma[0, 1, r])/(r*s^2) - ((-1 + s)*(-1 + r*s)*Log[r] * Derivative[0, 1][QPochhammer][r, r])/(s^2 * QPochhammer[r, r]) + r*Log[r]*QPochhammer[r, r]*QPochhammer[s, r] * Derivative[0, 1][QPochhammer][1/(r*s), r] + ((-1 + s)*(QPochhammer[s, r]*(Log[r] + (1 - r*s)* QPolyGamma[0, -Log[r*s]/Log[r], r]) + r*(1 - r*s)*Log[r]* Derivative[0, 1][QPochhammer][s, r]))/(r*s^2 * QPochhammer[s, r]))) / (2*Log[r]^2 + (-3 + s*(1 + r + r*s)) * Log[r] * QPolyGamma[0, Log[s]/Log[r], r] + (-1 + s)*(-1 + r*s) * QPolyGamma[0, Log[s]/Log[r], r]^2 + ((3 - s*(1 + r + r*s))*Log[r] - 2*(-1 + s)*(-1 + r*s) * QPolyGamma[0, Log[s]/Log[r], r]) * QPolyGamma[0, -Log[r*s]/Log[r], r] + (-1 + s)*(-1 + r*s) * QPolyGamma[0, -Log[r*s]/Log[r], r]^2 + (-1 + s)*(-1 + r*s)* QPolyGamma[1, Log[s]/Log[r], r] + (-1 + s)*(-1 + r*s)* QPolyGamma[1, -Log[r*s]/Log[r], r])]} /. FindRoot[{(1 - 1/(r*s))*(1 - s)/(QPochhammer[r] * QPochhammer[1/(r*s), r] * QPochhammer[s, r]) == s, (-2 + s + r*s)*Log[r] + (-1 + s)*(-1 + r*s)*(QPolyGamma[0, Log[s]/Log[r], r] - QPolyGamma[0, -Log[r*s]/Log[r], r]) == 0}, {r, 1/7}, {s, 4}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 19 2024 *)
PROG
(PARI) {a(n) = my(A=2+x, t=floor(sqrt(2*n+1)+1/2)); for(i=0, n, A = (A + 1/sum(m=-t, t, x^(m*(m+1)/2) * (-A)^m +x*O(x^n)) )/2 ); 4^n/2 * polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A057769 A221031 A221323 * A304917 A113667 A357351
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 25 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 3 19:11 EDT 2024. Contains 373087 sequences. (Running on oeis4.)