The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267383 Number A(n,k) of acyclic orientations of the Turán graph T(n,k); square array A(n,k), n>=0, k>=1, read by antidiagonals. 21

%I #26 Apr 24 2024 20:06:32

%S 1,1,1,1,1,1,1,1,2,1,1,1,2,4,1,1,1,2,6,14,1,1,1,2,6,18,46,1,1,1,2,6,

%T 24,78,230,1,1,1,2,6,24,96,426,1066,1,1,1,2,6,24,120,504,2286,6902,1,

%U 1,1,2,6,24,120,600,3216,15402,41506,1

%N Number A(n,k) of acyclic orientations of the Turán graph T(n,k); square array A(n,k), n>=0, k>=1, read by antidiagonals.

%C An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

%C Conjecture: In general, column k > 1 is asymptotic to n! / ((k-1) * (1 - log(k/(k-1)))^((k-1)/2) * k^n * (log(k/(k-1)))^(n+1)). - _Vaclav Kotesovec_, Feb 18 2017

%H Alois P. Heinz, <a href="/A267383/b267383.txt">Antidiagonals n = 0..140, flattened</a>

%H Richard P. Stanley, <a href="http://dx.doi.org/10.1016/0012-365X(73)90108-8">Acyclic Orientations of Graphs</a>, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Acyclic_orientation">Acyclic orientation</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Tur%C3%A1n_graph">Turán graph</a>

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 2, 2, 2, 2, 2, ...

%e 1, 4, 6, 6, 6, 6, 6, ...

%e 1, 14, 18, 24, 24, 24, 24, ...

%e 1, 46, 78, 96, 120, 120, 120, ...

%e 1, 230, 426, 504, 600, 720, 720, ...

%e 1, 1066, 2286, 3216, 3720, 4320, 5040, ...

%p A:= proc(n, k) option remember; local b, l, q; q:=-1;

%p l:= [floor(n/k)$(k-irem(n,k)), ceil(n/k)$irem(n,k)];

%p b:= proc(n, j) option remember; `if`(j=1, (q-n)^l[1]*

%p mul(q-i, i=0..n-1), add(b(n+m, j-1)*

%p Stirling2(l[j], m), m=0..l[j]))

%p end; forget(b);

%p abs(b(0, k))

%p end:

%p seq(seq(A(n, 1+d-n), n=0..d), d=0..14);

%t A[n_, k_] := A[n, k] = Module[{ b, l, q}, q = -1; l = Join[Array[Floor[n/k] &, k - Mod[n, k]], Array[ Ceiling[n/k] &, Mod[n, k]]]; b[nn_, j_] := b[nn, j] = If[j == 1, (q - nn)^l[[1]]*Product[q - i, {i, 0, nn - 1}], Sum[b[nn + m, j - 1]*StirlingS2[l[[j]], m], {m, 0, l[[j]]}]]; Abs[b[0, k]]]; Table[Table[A[n, 1 + d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover_, Feb 22 2016, after _Alois P. Heinz_ *)

%Y Columns k=1-10 give: A000012, A266695, A266858, A267384, A267385, A267386, A267387, A267388, A267389, A267390.

%Y Main diagonal gives A000142.

%Y A(2n,n) gives A033815.

%Y A(n,ceiling(n/2)) gives A161132.

%Y Bisection of column k=2 gives A048163.

%Y Trisection of column k=3 gives A370961.

%Y a(n^2,n) gives A372084.

%K nonn,tabl

%O 0,9

%A _Alois P. Heinz_, Jan 13 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 12:18 EDT 2024. Contains 372630 sequences. (Running on oeis4.)