The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A265674 Sequence that encodes the compliform polynomials associated to the tree of hemitropic sequences. 0
1, 0, 1, 0, 2, -1, 0, 1, 0, 3, 0, 1, 0, 4, -2, 0, 3, 1, 0, 3, 2, -1, 0, 2, 1, 0, 1, 0, 5, -2, 0, 4, 1, 0, 4, 2, 4, 0, 3, -2, 0, 3, 2, 0, 1, 0, 6, -2, 0, 5, 1, 0, 5, 2, 4, 0, 4, 1, 0, 4, 3, -3, 0, 4, 2, -4, 0, 3, 1, 0, 3, 2, 3, 0, 2, -3, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
For each integer n >= 1, e_n(x_2, ..., x_n) is a polynomial whose coefficients are integers and has degree 1 in each of the variables, x_2, ..., x_n, (a so-called compliform polynomial). Given the first n terms, 1, c_2, ..., c_n of a hemitropic sequence relative to a subset A of N, (see A265262), one has the following: c_(n+1) = e_n(c_2,...,c_n) if n+1 is not in A, c_(n+1 )= e_n(c_2,...,c_n) + 1 if n + 1 is in A. See Haddad link, formula (8), p. 37. The first few polynomials of the sequence e_n are:
e_1 = 1, e_2 = x_2 - 1, e_3 = x_3, e_4 =x_4 - 2x_3 + x_3x_2 - x_2 + 1, e_5 = x_5 - 2x_4 + x_4x_2 + 4x_3 - 2x_3x_2, e_6 =x_6 - 2x_5 + x_5x_2 + 4x_4 + x_4x_3 - 3x_4x_2 - 4x_3 + x_3x_2 + 3x_2 -3, e_7 =x_7 - 2x_6 + x_6x_2 + 4x_5 + x_5x_3 - 3x_5x_2 - 4x_4 - 2x_4x_3 + 4x_4x_2
+ 4x_3 - x_3x_2 - 4x_2 + 4.
Each monomial a.x_ix_j...x_k with i > j > ... > k, is converted into the sequence of integers a, 0, i, j, ..., k, where 0 is used for punctuation. There is no ambiguity. In the display, the monomials a.xixj, ..., xk, are ordered lexicographically in the (reverse) alphabet ..., n, ..., 3, 2. An e_n polynomial is thus converted into an irregular (finite) array:
e_1 = 1 --> 1;
e_2 = x_2 - 1 --> 1, 0, 2; -1;
e_3 = x_3 --> 1, 0, 3;
e_4 = x_4 - 2x_3 + x_3x_2 - x_2 + 1 --> 1, 0, 4; -2, 0, 3; 1, 0, 3, 2; -1, 0, 2; 1;
e_5 = x_5 - 2x_4 + x_4x_2 + 4x_3 - 2x_3x_2 --> 1, 0, 5; -2, 0, 4; 1, 0, 4, 2; 4, 0, 3; -2, 0, 3, 2;
Conversions are one-to-one, bijective. By concatenation of the arrays, the whole sequence of the e_n’s is again an infinite irregular array, with again 0 for punctuation.
LINKS
Labib Haddad, Some peculiarities of order 2 bases of N and the Erdos-Turan conjecture, arXiv:1507.05849 [math.NT], 2015
FORMULA
An algorithm for the e_n's. For k >+ 1, let P_(k+1) = (x_(k+1) - e_k)^2 - (x_(k+1) - e_k) = x_(k+1)^2 -x_(k+1) -2x_k+1e_k + e_k^2 + e_k: a polynomial in several variables, having degree 2 in the variable x_(k+1).
Start with e_1 = 1. Once the polynomials e_1,...,e_(n-1) have been obtained, set E_n =(x_n-e_(n-1))+(x_2-e_1)(x_(n-1)- e_(n-2)) + ... + (x_m - e_(m-1))(x_(n-m+1) - e_(n-m)) with m = floor((n + 1)/2): a polynomial in the variables x_2,...,x_n, not necessarily compliform, whose coefficients are integers, and having degree 1 in x_n.
Then, reduce E_n as follows: Let E_(n,n-1) be the remainder in the Euclidean division of E_n by P_(n-1) as polynomials in x_(n-1). Inductively, let E_(n,n-1,...,k) be the remainder in the Euclidean division of E_(n,n-1,k+1) by P_k as polynomials in x_k. This gives e_n = E_(n,n-1,··· ,2), a compliform polynomial. See Haddad link p.32 Corollary.
CROSSREFS
Cf. A265262.
Sequence in context: A281498 A118269 A144152 * A229297 A116675 A123022
KEYWORD
sign,tabf
AUTHOR
Labib Haddad, Dec 13 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 15:56 EDT 2024. Contains 372916 sequences. (Running on oeis4.)