Integers sequence A256881

Pierre-Alain Sallard

December 15, 2018

Abstract

A256881 is the sequence of the reciprocals of coefficients of a power series arising as the sum of repeated integrals of the hyperbolic sine.

1 A classical result

Let $I=[a, b]$ be an interval such that $0 \in I$ and let $f: I \rightarrow \mathbb{R}$ be a continuous function.
Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be the sequence of repeated integrals of f, i.e.

$$
\left\{\begin{array}{l}
f_{0}=f \\
\forall x \in I, f_{n+1}(x)=\int_{0}^{x} f_{n}(t) \mathrm{d} t
\end{array}\right.
$$

A classical exercice (see e.g. Le jardin d'Eiden - Une année de colles en Maths Spé, Eiden Jean-Denis, Calvage \mathcal{F} Mounet, 2012, p.510) is to prove that:

1. the functions series $\sum f_{n}$ is normally convergent on I;
2. its sum $F: x \mapsto \sum_{n=0}^{+\infty} f_{n}(x)$ can be written as :

$$
\forall x \in I, F(x)=f(x)+\int_{0}^{x} f(t) \mathrm{e}^{x-t} \mathrm{~d} t
$$

2 Power Series of the sum of repeated integrals of the hyperboloic sine

If $f=\sinh$, the sum F of its repeated integrals is $F: x \mapsto \frac{\sinh (x)+x \mathrm{e}^{x}}{2}$. F can be written as a power series :

$$
F(x)=\sum_{n=1}^{+\infty}\left(\frac{\delta_{n}}{2 n!}+\frac{1}{2(n-1)!}\right) x^{n}=\sum_{n=1}^{+\infty} a_{n} x^{n}
$$

where $\delta_{n}=1$ if n is odd and $\delta_{n}=0$ if n is even and $a_{n}=\frac{n+\delta_{n}}{2 n!}$. We state that $\frac{1}{a_{n}}=\frac{2 \times n!}{n+\delta_{n}}$ is equal to $\frac{n!}{\lceil n / 2\rceil}$.

Indeed, if $n=2 m$ is even, then $\frac{1}{a_{n}}=\frac{1}{a_{2 m}}=\frac{(2 m)!}{m}=\frac{n!}{\lceil n / 2\rceil}$. And if $n=2 m+1$ is odd, then $\frac{1}{a_{n}}=\frac{1}{a_{2 m+1}}=\frac{(2 m+1)!}{m+1}=\frac{n!}{\lceil n / 2\rceil}$.
The sequence $\left(\frac{1}{a_{n}}\right)_{n \in \mathbb{N}^{*}}=(1,2,3,12,40,240,1260,10080,72576, \ldots)$ corresponds to the A256881 OEIS sequence.

