Integers sequence A256881

Pierre-Alain Sallard

December 15, 2018

Abstract

A256881 is the sequence of the reciprocals of coefficients of a power series arising as the sum of repeated integrals of the hyperbolic sine.

1 A classical result

Let I = [a, b] be an interval such that $0 \in I$ and let $f : I \to \mathbb{R}$ be a continuous function.

Let $(f_n)_{n \in \mathbb{N}}$ be the sequence of repeated integrals of f, i.e.

$$\begin{cases} f_0 = f \\ \forall x \in I, \ f_{n+1}(x) = \int_0^x f_n(t) dt \end{cases}$$

A classical exercice (see e.g. Le jardin d'Eiden – Une année de colles en Maths Spé, Eiden Jean-Denis, Calvage & Mounet, 2012, p.510) is to prove that:

- 1. the functions series $\sum f_n$ is normally convergent on I;
- 2. its sum $F: x \mapsto \sum_{n=0}^{+\infty} f_n(x)$ can be written as :

$$\forall x \in I, \ F(x) = f(x) + \int_0^x f(t) \mathrm{e}^{x-t} \mathrm{d}t$$

2 Power Series of the sum of repeated integrals of the hyperboloic sine

If $f = \sinh$, the sum F of its repeated integrals is $F: x \mapsto \frac{\sinh(x) + xe^x}{2}$. F can be written as a power series :

$$F(x) = \sum_{n=1}^{+\infty} \left(\frac{\delta_n}{2n!} + \frac{1}{2(n-1)!}\right) x^n = \sum_{n=1}^{+\infty} a_n x^n$$

where $\delta_n = 1$ if n is odd and $\delta_n = 0$ if n is even and $a_n = \frac{n+\delta_n}{2n!}$. We state that $\frac{1}{a_n} = \frac{2 \times n!}{n+\delta_n}$ is equal to $\frac{n!}{\lceil n/2 \rceil}$. Indeed, if n = 2m is even, then $\frac{1}{a_n} = \frac{1}{a_{2m}} = \frac{(2m)!}{m} = \frac{n!}{\lceil n/2 \rceil}$. And if n = 2m + 1 is odd, then $\frac{1}{a_n} = \frac{1}{a_{2m+1}} = \frac{(2m+1)!}{m+1} = \frac{n!}{\lceil n/2 \rceil}$.

The sequence $\left(\frac{1}{a_n}\right)_{n \in \mathbb{N}^*} = (1, 2, 3, 12, 40, 240, 1260, 10080, 72576, ...)$ corresponds to the A256881 OEIS sequence.