The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249478 E.g.f.: P(x)/exp(2) + Q(x), where P(x) = 1/Product_{n>=1} (1 - x^n/n) and Q(x) = Sum_{n>=1} -(-2)^n/Product_{k=1..n} (k - x^k). 6
1, 1, 1, 5, 12, 88, 496, 4032, 32072, 335144, 3443928, 41477176, 523289472, 7298441952, 107525078304, 1714360202528, 28771306555776, 515446334184832, 9722819034952832, 193501572577378944, 4042243606465206784, 88584621284011603968, 2029364250844776170496, 48539531534286294782976 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
The function P(x) = Product_{n>=1} 1/(1 - x^n/n) equals the e.g.f. of A007841, the number of factorizations of permutations of n letters into cycles in nondecreasing length order.
LINKS
EXAMPLE
E.g.f.: A(x) = 1 + x + x^2/2! + 5*x^3/3! + 12*x^4/4! + 88*x^5/5! +...
such that A(x) = exp(-2)*P(x) + Q(x), where
P(x) = 1/Product_{n>=1} (1 - x^n/n) = Sum_{n>=0} A007841(n)*x^n/n!, and
Q(x) = Sum_{n>=1} -(-2)^n / Product_{k=1..n} (k - x^k).
More explicitly,
P(x) = 1/((1-x)*(1-x^2/2)*(1-x^3/3)*(1-x^4/4)*(1-x^5/5)*...);
Q(x) = 2/(1-x) - 2^2/((1-x)*(2-x^2)) + 2^3/((1-x)*(2-x^2)*(3-x^3)) - 2^4/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + 2^5/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +...
We can illustrate the initial terms a(n) in the following manner.
The coefficients in Q(x) = Sum_{n>=0} q(n)*x^n/n! begin:
q(0) = 0.864664716763387308106000...
q(1) = 0.864664716763387308106000...
q(2) = 0.593994150290161924318001...
q(3) = 3.511311884397260389166005...
q(4) = 4.421224138749689253936028...
q(5) = 44.15136823133748782634416...
q(6) = 181.4808017581121040383451...
q(7) = 1551.033587706416132199201...
q(8) = 9397.385305404963149311748...
q(9) = 108557.0073471358880187848...
and the coefficients in P(x) = 1/Product_{n>=1} (1 - x^n/n) begin:
A007841 = [1, 1, 3, 11, 56, 324, 2324, 18332, 167544, ...];
from which we can generate this sequence like so:
a(0) = exp(-2)*1 + q(0) = 1;
a(1) = exp(-2)*1 + q(1) = 1;
a(2) = exp(-2)*3 + q(2) = 1;
a(3) = exp(-2)*11 + q(3) = 5;
a(4) = exp(-2)*56 + q(4) = 12;
a(5) = exp(-2)*324 + q(5) = 88;
a(6) = exp(-2)*2324 + q(6) = 496;
a(7) = exp(-2)*18332 + q(7) = 4032;
a(8) = exp(-2)*167544 + q(8) = 32072; ...
PROG
(PARI) \p100 \\ set precision
{P=Vec(serlaplace(prod(k=1, 31, 1/(1-x^k/k +O(x^31))))); } \\ A007841
{Q=Vec(serlaplace(sum(n=1, 201, -(-2)^n * prod(k=1, n, 1./(k-x^k +O(x^31)))))); }
for(n=0, 30, print1(round(exp(-2)*P[n+1]+Q[n+1]), ", "))
CROSSREFS
Sequence in context: A219288 A368074 A064371 * A009414 A009426 A304001
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 29 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 07:07 EDT 2024. Contains 373013 sequences. (Running on oeis4.)