login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A240943 Decimal expansion of the radius of convergence of Wedderburn-Etherington numbers g.f. 2
4, 0, 2, 6, 9, 7, 5, 0, 3, 6, 7, 1, 4, 4, 1, 2, 9, 0, 9, 6, 9, 0, 4, 5, 3, 4, 8, 6, 5, 1, 0, 8, 3, 8, 0, 3, 4, 1, 7, 5, 5, 6, 7, 2, 1, 6, 2, 4, 9, 7, 2, 6, 5, 9, 2, 9, 1, 0, 5, 3, 4, 6, 4, 6, 0, 7, 6, 4, 2, 7, 2, 8, 9, 6, 6, 5, 2, 4, 2, 5, 8, 4, 1, 6, 4, 1, 6, 0, 9, 6, 0, 2, 6, 2, 1, 7, 2, 0, 5, 9, 5, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's Tree Enumeration Constants, p. 297.

LINKS

Table of n, a(n) for n=0..101.

Nicolas Broutin and Philippe Flajolet, The height of random binary unlabelled trees, arXiv:0807.2365 [math.CO], 2008.

Eric Weisstein's World of Mathematics, Weakly binary tree

FORMULA

1/A086317.

EXAMPLE

0.4026975036714412909690453486510838034175567216249726592910534646...

MATHEMATICA

digits = 102; n0 = 50; dn = 50; Clear[rho]; rho[n_] := rho[n] = (Clear[c]; c[0] = 0; y[z_] = Sum[c[k]*z^k, {k, 0, n}]; eq[0] = Rest[ Thread[CoefficientList[(-2*z + 2*y[z] - y[z]^2 - y[z^2])/2, z] == 0]]; s[1] = First[Solve[First[eq[0]], c[1]]]; Do[eq[k-1] = Rest[eq[k-2]] /. s[k-1]; s[k] = First[Solve[First[eq[k-1]], c[k]]], {k, 2, n}]; z /. FindRoot[ 2*z + y[z^2] == 1 /. Flatten[Table[s[k], {k, 1, n}]], {z, 1/2}, WorkingPrecision -> digits+10]); rho[n0]; rho[n = n0 + dn]; While[RealDigits[rho[n], 10, digits] != RealDigits[rho[n - dn], 10, digits], Print["n = ", n]; n = n + dn]; RealDigits[rho[n], 10, digits] // First

(* or, after A086317: *) Clear[c, xi]; c[0] = 2; c[n_] := c[n] = c[n-1]^2 + 2; xi[n_Integer] := xi[n] = c[n]^(2^-n); xi[5]; xi[n = 10]; While[RealDigits[xi[n], 10, digits] != RealDigits[xi[n-5], 10, digits], n = n+5]; RealDigits[1/xi[n], 10, digits] // First (* Jean-François Alcover, Aug 04 2014 *)

CROSSREFS

Cf. A001190, A086317.

Sequence in context: A021717 A016679 A178903 * A271823 A011352 A275983

Adjacent sequences:  A240940 A240941 A240942 * A240944 A240945 A240946

KEYWORD

nonn,cons

AUTHOR

Jean-François Alcover, Aug 04 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 24 04:14 EDT 2017. Contains 292402 sequences.