The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226729 G.f.: 1 / G(0), where G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ). 5
1, 1, 2, 4, 8, 17, 36, 76, 162, 345, 734, 1564, 3332, 7098, 15124, 32224, 68658, 146291, 311704, 664152, 1415124, 3015237, 6424636, 13689132, 29167776, 62148513, 132421414, 282153672, 601192008, 1280975135, 2729406380, 5815615784, 12391480916, 26402844538, 56257214530, 119868682488 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
What does this sequence count?
Conjectures from John Tyler Rascoe, Nov 04 2023: (Start)
a(n) is the number of integer compositions of n into two kinds of odd parts with the following restrictions. Each composition has first part 1a. For all a parts pa_i >= px_{i+1} and for all b parts pb_i >= px_{i+1} or pb_i = (p+2)a_{i+1}.
In general if B(i) = b_1, b_2, ..., b_i is an infinite sequence where b_1 > 0 and b_i <= b_{i+1} for all i, let A(q) = 1/(1-q^b_1/(1-q^b_2/(1-q^b_3/(1-...)))) be a generating function where the exponents of q are the sequence B(i).
Then A(q) counts integer compositions into parts b_i with the following restrictions. Every composition has first part p_1 = b_1 and for every pair of parts (p_j,p_{j+1}), B^-1(p_j) + 1 >= B^-1(p_{j+1}). Where j is the position of the part p_j within the composition itself and B^-1(p_j) is the index of p_j in B(i). (End)
LINKS
FORMULA
G.f.: 1/(1-q/(1-q/(1-q^3/(1-q^3/(1-q^5/(1-q^5/(1-q^7/(1-q^7/(1-...))))))))).
G.f.: 1/W(0), where W(k)= 1 - x^(2*k+1)/(1 - x^(2*k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013
a(n) ~ c * d^n, where d = 2.13072551790181698200128321720925945740967671226348407873633962907725871... and c = 0.38040216799237980431596440625527448705929594287571043849218282414099437... - Vaclav Kotesovec, Sep 05 2017
Conjecture: a(n) = Sum_{i=0..floor((n-sqrt(2*n-1))/2)} A129183(n-(2*i),n-i). - John Tyler Rascoe, Nov 04 2023
MATHEMATICA
nmax = 50; CoefficientList[Series[1/Fold[(1 - #2/#1) &, 1, Reverse[x^(2*Range[nmax + 1] - 2*Floor[Range[nmax + 1]/2] - 1)]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 05 2017 *)
PROG
(PARI) N = 66; q = 'q + O('q^N);
G(k) = if(k>N, 1, 1 - q^(k+1) / (1 - q^(k+1) / G(k+2) ) );
gf = 1 / G(0)
Vec(gf)
CROSSREFS
Cf. A226728 (g.f.: 1/G(0), G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A227309 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ).
Cf. A129183.
Sequence in context: A052903 A308745 A367714 * A063457 A262735 A190162
KEYWORD
nonn
AUTHOR
Joerg Arndt, Jun 29 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 23:15 EDT 2024. Contains 372524 sequences. (Running on oeis4.)