The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225466 Triangle read by rows, 3^k*S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0. 11

%I #61 Mar 14 2024 15:43:32

%S 1,2,3,4,21,9,8,117,135,27,16,609,1431,702,81,32,3093,13275,12015,

%T 3240,243,64,15561,115479,171990,81405,13851,729,128,77997,970515,

%U 2238327,1655640,479682,56133,2187,256,390369,7998111,27533142,29893941,13121514,2561706

%N Triangle read by rows, 3^k*S_3(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.

%C The definition of the Stirling-Frobenius subset numbers of order m is in A225468.

%C From _Wolfdieter Lang_, Apr 09 2017: (Start)

%C This is the Sheffer triangle (exp(2*x), exp(3*x) - 1), denoted by S2[3,2]. See also A282629 for S2[3,1]. The stirling2 triangle A048993 is in this notation denoted by S2[1,0].

%C The a-sequence for this Sheffer triangle has e.g.f. 3*x/log(1+x) and is 3*A006232(n)/A006233(n) (Cauchy numbers of the first kind). For a- and z-sequences for Sheffer triangles see the W. Lang link under A006232, also with references).

%C The z-sequence has e.g.f. (3/(log(1+x)))*(1 - 1/(1+x)^(2/3)) and gives 2*A284862/A284863.

%C The first column k sequences divided by 3^k are A000079, A016127, A016297, A025999. For the e.g.f.s and o.g.f.s see below.

%C The row sums give A284864. The alternating row sums give A284865.

%C This triangle appears in the o.g.f. G(n, x) of the sequence {(2 + 3*m)^n}_{m>=0}, as G(n, x) = Sum_{k=0..n} T(n, k)*k!*x^k/(1-x)^(k+1), n >= 0. Hence the corresponding e.g.f. is, by the linear inverse Laplace transform, E(n, t) = Sum_{m >=0} (2 + 3*m)^n t^m/m! = exp(t)*Sum_{k=0..n} T(n, k)*t^k.

%C The corresponding Eulerian number triangle is A225117(n, k) = Sum_{m=0..k} (-1)^(k-m)*binomial(n-m, k-m)*T(n, m)*m!, 0 <= k <= n. (End)

%H Vincenzo Librandi, <a href="/A225466/b225466.txt">Rows n = 0..50, flattened</a>

%H Paweł Hitczenko, <a href="https://arxiv.org/abs/2403.03422">A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality</a>, arXiv:2403.03422 [math.CO], 2024. See p. 9.

%H Peter Luschny, <a href="http://www.luschny.de/math/euler/GeneralizedEulerianPolynomials.html">Eulerian polynomials.</a>

%H Peter Luschny, <a href="http://www.luschny.de/math/euler/StirlingFrobeniusNumbers.html">The Stirling-Frobenius numbers.</a>

%H Shi-Mei Ma, Toufik Mansour, and Matthias Schork, <a href="http://arxiv.org/abs/1308.0169">Normal ordering problem and the extensions of the Stirling grammar</a>, Russian Journal of Mathematical Physics, 2014, 21(2), arXiv:1308.0169 [math.CO], 2013, p. 12.

%F T(n, k) = (1/k!)*Sum_{j=0..n} binomial(j, n-k)*A_3(n, j) where A_m(n, j) are the generalized Eulerian numbers A225117.

%F For a recurrence see the Maple program.

%F T(n, 0) ~ A000079; T(n, 1) ~ A005057; T(n, n) ~ A000244.

%F From _Wolfdieter Lang_, Apr 09 2017: (Start)

%F T(n, k) = Sum_{j=0..k} binomial(k,j)*(-1)^(j-k)*(2 + 3*j)^n/k!, 0 <= k <= n.

%F E.g.f. of triangle: exp(2*z)*exp(x*(exp(3*z)-1)) (Sheffer type).

%F E.g.f. for sequence of column k is exp(2*x)*((exp(3*x) - 1)^k)/k! (Sheffer property).

%F O.g.f. for sequence of column k is 3^k*x^k/Product_{j=0..k} (1 - (2+3*j)*x).

%F A nontrivial recurrence for the column m=0 entries T(n, 0) = 2^n from the z-sequence given above: T(n,0) = n*Sum_{k=0..n-1} z(k)*T(n-1,k), n >= 1, T(0, 0) = 1.

%F The corresponding recurrence for columns k >= 1 from the a-sequence is T(n, k) = (n/k)* Sum_{j=0..n-k} binomial(k-1+j, k-1)*a(j)*T(n-1, k-1+j).

%F Recurrence for row polynomials R(n, x) (Meixner type): R(n, x) = ((3*x+2) + 3*x*d_x)*R(n-1, x), with differentiation d_x, for n >= 1, with input R(0, x) = 1.

%F (End)

%F Boas-Buck recurrence for column sequence m: T(n, k) = (1/(n - m))*[(n/2)*(4 + 3*m)*T(n-1, k) + m* Sum_{p=m..n-2} binomial(n, p)(-3)^(n-p)*Bernoulli(n-p)*T(p, k)], for n > k >= 0, with input T(k, k) = 3^k. See a comment and references in A282629, An example is given below. - _Wolfdieter Lang_, Aug 11 2017

%e [n\k][ 0, 1, 2, 3, 4, 5, 6, 7]

%e [0] 1,

%e [1] 2, 3,

%e [2] 4, 21, 9,

%e [3] 8, 117, 135, 27,

%e [4] 16, 609, 1431, 702, 81,

%e [5] 32, 3093, 13275, 12015, 3240, 243,

%e [6] 64, 15561, 115479, 171990, 81405, 13851, 729,

%e [7] 128, 77997, 970515, 2238327, 1655640, 479682, 56133, 2187.

%e ...

%e From _Wolfdieter Lang_, Aug 11 2017: (Start)

%e Recurrence (see the Maple program): T(4, 2) = 3*T(3, 1) + (3*2+2)*T(3, 2) = 3*117 + 8*135 = 1431.

%e Boas-Buck recurrence for column m = 2, and n = 4: T(4,2) = (1/2)*[2*(4 + 3*2)*T(3, 2) + 2*6*(-3)^2*Bernoulli(2)*T(2, 2))] = (1/2)*(20*135 + 12*9*(1/6)*9) = 1431. (End)

%p SF_SS := proc(n, k, m) option remember;

%p if n = 0 and k = 0 then return(1) fi;

%p if k > n or k < 0 then return(0) fi;

%p m*SF_SS(n-1, k-1, m) + (m*(k+1)-1)*SF_SS(n-1, k, m) end:

%p seq(print(seq(SF_SS(n, k, 3), k=0..n)), n=0..5);

%t EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/k!; Table[ SFSS[n, k, 3], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 29 2013, translated from Sage *)

%o (Sage)

%o @CachedFunction

%o def EulerianNumber(n, k, m) :

%o if n == 0: return 1 if k == 0 else 0

%o return (m*(n-k)+m-1)*EulerianNumber(n-1,k-1,m) + (m*k+1)*EulerianNumber(n-1,k,m)

%o def SF_SS(n, k, m):

%o return add(EulerianNumber(n,j,m)*binomial(j,n-k) for j in (0..n))/ factorial(k)

%o def A225466(n): return SF_SS(n, k, 3)

%o (PARI) T(n, k) = sum(j=0, k, binomial(k, j)*(-1)^(j - k)*(2 + 3*j)^n/k!);

%o for(n=0, 10, for(k=0, n, print1(T(n, k),", ");); print();) \\ _Indranil Ghosh_, Apr 10 2017

%o (Python)

%o from sympy import binomial, factorial

%o def T(n, k): return sum(binomial(k, j)*(-1)**(j - k)*(2 + 3*j)**n//factorial(k) for j in range(k + 1))

%o for n in range(11): print([T(n, k) for k in range(n + 1)]) # _Indranil Ghosh_, Apr 10 2017

%Y Cf. A048993 (m=1), A154537 (m=2), A225467 (m=4), A225468.

%Y Cf. A000079, A000244, A005057, A016127, A016297, A025999, A006232/A006233, A225117, A225472, A225468, A282629, A284862/A284863, A284864, A284865.

%K nonn,easy,tabl

%O 0,2

%A _Peter Luschny_, May 08 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 03:10 EDT 2024. Contains 373207 sequences. (Running on oeis4.)