The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A213816 Tribonacci sequences A000073 and A001590 interleaved. 5

%I #56 Sep 08 2022 08:46:02

%S 1,1,1,2,2,3,4,6,7,11,13,20,24,37,44,68,81,125,149,230,274,423,504,

%T 778,927,1431,1705,2632,3136,4841,5768,8904,10609,16377,19513,30122,

%U 35890,55403,66012,101902,121415,187427,223317,344732,410744,634061,755476,1166220

%N Tribonacci sequences A000073 and A001590 interleaved.

%C Bruce (see link) formulated the sequence using the following two equations:

%C a(2n) = a(2n-1)+a(2n-3),

%C a(2n+1) = a(2n-1)+a(2n-2),

%C with n>1 and initial conditions a(1)=a(2)=a(3)= 1.

%C These equations lead to a pair of tribonacci-type recurrence equations, for n>2:

%C a(2n+1) = a(2n-1)+a(2n-3)+a(2n-5),

%C a(2n+2) = a(2n)+a(2n-2)+a(2n-4).

%C It could be more appropriate to consider the sequence as a kind of two-dimensional tribonacci sequence (a(2n-1),(a(2n)), i.e. as (1, 1), (1, 2), (2, 3), (4, 6), (7, 11), (13, 20), (24, 37), (44, 68), (81, 125), (149, 230), (274, 423), (504, 778), (927, 1431), (1705, 2632), (3136, 4841),... since after the first three initial pairs, the next pair can be obtained by adding three previous pairs component-wise. However, the first three initial pairs (1, 1), (1, 2), (2, 3) are redundant in comparison with the original integer sequence that needs only three initial integers 1, 1 and 1.

%C One method to construct the two-dimensional sequence is by using the well-known tribonacci-related morphism f with f(a) = ab, f(b) = ac, f(c) = a on the monoid of strings over the alphabet {a, b, c}. Using component-wise map, the following sequence of pairs is obtained: (c,b), (a, ac), (ab, aba), (abac, abacab), (abacaba, abacabaabac), (abacabaabacab, abacabaabacababacaba), ...; which is initialized by the pair (c,b) and any pair (x,y) is followed by (f(x),f(y)). The length of every string in every component consitutes the two-dimensional sequence.

%H Vincenzo Librandi, <a href="/A213816/b213816.txt">Table of n, a(n) for n = 1..1000</a>

%H Ian Bruce, <a href="https://www.fq.math.ca/Scanned/22-3/bruce.pdf">A Modified Tribonacci Sequence</a>, The Fibonacci Quarterly 22, no.3 (1984), 244-246.

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,1,0,1).

%F G.f.: x*(1+x+x^3)/(1-x^2-x^4-x^6). [corrected by _G. C. Greubel_, Nov 03 2018]

%F a(1) = a(2) = a(3) = 1; for n>1:

%F a(2n) = a(2n-1) + a(2n-3),

%F a(2n+1) = a(2n-1) + a(2n-2).

%e The first 14 pairs of string and its length are

%e (c, 1);

%e (b, 1);

%e (a, 1);

%e (ac, 2);

%e (ab, 2);

%e (aba, 3);

%e (abac, 4);

%e (abacab, 6);

%e (abacaba, 7);

%e (abacabaabac, 11);

%e (abacabaabacab, 13);

%e (abacabaabacababacaba, 20);

%e (abacabaabacababacabaabac, 24);

%e (abacabaabacababacabaabacabacabaabacab, 37); ...

%p with(StringTools):

%p # The following procedure defines the morphism f

%p Morphf := proc (x::string) local Start, L, Init, i;

%p Init := x;

%p L := length(Init);

%p Start := 1;

%p for i from Start to 2*L do

%p if Init[i] = "c" then

%p Init := Insert(Init, i, "a"); i := i+1; L := L+1;

%p Init := Delete(Init, i-1 .. i-1); i := i-1; L := L-1;

%p elif Init[i] = "b" then

%p Init := Insert(Init, i, "ac"); i := i+2; L := L+2;

%p Init := Delete(Init, i-2 .. i-2); i := i-1; L := L-1;

%p elif Init[i] = "a" then

%p Init := Insert(Init, i, "b"); i := i+1; L := L+1;

%p end if;

%p end do;

%p eval(Init);

%p end proc:

%p #The following procedure is intended to create sequence of

%p #strings c, b, a, ac, ab, aba, abac, ..., etc, obtained by

%p #iterating the morphism f n times but it starts from the third

%p #string "a", i.e. leaving the first two strings "c" and "b"

%p #behind:

%p TribWord := proc (x1, x2::string, n) local A, B, C, i;

%p A := x1; B := x2;

%p for i to n do

%p if type(i, odd) = true then

%p A := Morphf(A);

%p C := A;

%p else

%p B := Morphf(B); C := B

%p end if;

%p end do;

%p eval(C);

%p end proc;

%p #The following command will print a(1), a(2), ..., a(30).

%p for i to 30 do

%p printf("%d%s", length(TribWord("c", "b", i-2)), `, `);

%p end do

%t LinearRecurrence[{0, 1, 0, 1, 0, 1}, {1, 1, 1, 2, 2, 3}, 48] (* _Bruno Berselli_, Jun 25 2012 *)

%o (PARI) x='x+O('x^50); Vec(x*(1+x+x^3)/(1-x^2-x^4-x^6)) \\ _G. C. Greubel_, Nov 03 2018

%o (Magma) I:=[1, 1, 1, 2, 2, 3]; [n le 6 select I[n] else Self(n-2) + Self(n-4) + Self(n-6): n in [1..50]]; // _G. C. Greubel_, Nov 03 2018

%Y Cf. A000073.

%K nonn,easy

%O 1,4

%A _Loeky Haryanto_, Jun 22 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 9 00:14 EDT 2024. Contains 373227 sequences. (Running on oeis4.)